Elaboración, Revisión y Aprobación

<table>
<thead>
<tr>
<th>Actividad</th>
<th>Tema</th>
<th>Nombre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elaboró</td>
<td>Guía metodológica: Coordinación de</td>
<td>Consultoría Colombiana S.A</td>
</tr>
<tr>
<td></td>
<td>protecciones redes de distribución</td>
<td></td>
</tr>
<tr>
<td>Revisó</td>
<td></td>
<td>Marco Ortiz</td>
</tr>
<tr>
<td>Aprobó</td>
<td></td>
<td>Mónica Rueda</td>
</tr>
</tbody>
</table>

Requeridores

<table>
<thead>
<tr>
<th>Destinatario</th>
<th>Cargo</th>
<th>No. de Copias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Johan Sebastián Higuita</td>
<td>Profesional Ingeniería</td>
<td>1</td>
</tr>
<tr>
<td>Gabriel Jaime Romero Choperena</td>
<td>Gestión Proyectos e Ingeniería</td>
<td>1</td>
</tr>
</tbody>
</table>

Revisiones

<table>
<thead>
<tr>
<th>Revisión</th>
<th>Fecha dd/mm/aaa</th>
<th>Descripción de la revisión</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>01/10/2019</td>
<td>Versión inicial</td>
</tr>
</tbody>
</table>

© Copyright: Empresas Públicas de Medellín ESP. No está permitida su reproducción por ningún medio impreso, fotostático, electrónico o similar, sin la previa autorización escrita del titular de los derechos reservados.
CONTENIDO

<table>
<thead>
<tr>
<th></th>
<th>OBJETO</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>ALCANCE</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>DOCUMENTOS DE REFERENCIA</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>DEFINICIONES</td>
<td>9</td>
</tr>
<tr>
<td>4.1</td>
<td>GENERALES</td>
<td>9</td>
</tr>
<tr>
<td>4.2</td>
<td>ELEMENTOS DE PROTECCIÓN DE SOBRECORRIENTE</td>
<td>9</td>
</tr>
<tr>
<td>4.3</td>
<td>ACRÓNIMOS</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>COORDINACIÓN DE PROTECCIONES EN SISTEMAS DE DISTRIBUCIÓN RADIALES</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>COORDINACIÓN FUSIBLES</td>
<td>13</td>
</tr>
<tr>
<td>6.1</td>
<td>COORDINACIÓN FUSIBLE – FUSIBLE (EXPULSIÓN)</td>
<td>13</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Método de coordinación por curvas tiempo-corriente (TCC)</td>
<td>13</td>
</tr>
<tr>
<td>6.2</td>
<td>COORDINACIÓN FUSIBLE LIMITADOR –FUSIBLE LIMITADOR</td>
<td>15</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Método de coordinación por curvas tiempo-corriente (TCC) / I^2t</td>
<td>15</td>
</tr>
<tr>
<td>6.3</td>
<td>COORDINACIÓN FUSIBLE LIMITADOR – FUSIBLE EXPULSIÓN</td>
<td>17</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Método de coordinación por curvas tiempo-corriente (TCC) / I^2t</td>
<td>17</td>
</tr>
<tr>
<td>6.4</td>
<td>COORDINACIÓN FUSIBLE EXPULSIÓN – FUSIBLE LIMITADOR</td>
<td>18</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Método de coordinación por curvas tiempo-corriente (TCC) / I^2t</td>
<td>19</td>
</tr>
<tr>
<td>7</td>
<td>COORDINACIÓN RELÉS</td>
<td>21</td>
</tr>
<tr>
<td>7.1</td>
<td>COORDINACIÓN RELÉ – FUSIBLE</td>
<td>21</td>
</tr>
<tr>
<td>7.2</td>
<td>COORDINACIÓN RELÉ – RECONECTADOR</td>
<td>24</td>
</tr>
<tr>
<td>8</td>
<td>COORDINACIÓN RECONECTADORES</td>
<td>25</td>
</tr>
<tr>
<td>8.1</td>
<td>COORDINACIÓN RECONECTADOR – FUSIBLE</td>
<td>25</td>
</tr>
<tr>
<td>8.2</td>
<td>COORDINACIÓN RECONECTADOR – RECONECTADOR</td>
<td>29</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Coordinación entre reconectadores de control hidráulico</td>
<td>29</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Coordinación entre reconectadores de control electrónico</td>
<td>31</td>
</tr>
<tr>
<td>8.3</td>
<td>COORDINACIÓN RECONECTADOR – SECCIONALIZADOR</td>
<td>33</td>
</tr>
</tbody>
</table>
ÍNDICE DE TABLAS

Tabla 1 Factor K de ajuste reconectadores [4].. 25
ÍNDICE DE FIGURAS

Figura 1 Diagrama de red para coordinación de fusibles .. 13
Figura 2 Curvas TCC de los fusibles del sistema [1].. 14
Figura 3 Curvas TCC FLC 3.6-7.2-12-17.5-24-36 kV [5]... 16
Figura 4 Coordinación FLC - Fusible expulsión 15T [3]... 18
Figura 5 Coordinación fusible expulsión / fusible FLC [2].. 19
Figura 6 Ejemplo coordinación relé-fusible ... 22
Figura 7 Coordinación relé-fusible (fusión fusible) [6]... 22
Figura 8 Coordinación relé-fusible (salvar fusible) [6]... 23
Figura 9 Coordinación relé - reconectador [3]... 24
Figura 10 Coordinación reconectador – fusible .. 25
Figura 11 Curva rápida reconectador - curvas MMT fusibles T [4]....................................... 26
Figura 12 Curva lenta reconectador - curvas MCT fusibles T [4].. 27
Figura 13 Curvas reconectador - fusible expulsión 40T [4].. 28
Figura 14 Diagrama reconectadores de distinta capacidad en bobina de disparo [4]........ 30
Figura 15 Curvas operación reconectadores de distinta capacidad en bobina de disparo [4] .. 30
Figura 16 Diagrama reconectadores de igual capacidad en bobina de disparo................. 31
Figura 17 Coordinación reconectador - seccionalizador... 33
1 OBJETO

Establecer el marco metodológico para el cálculo de coordinación de los elementos de protección de sobrecorriente requeridos en el sistema de distribución de energía del grupo EPM en los niveles de tensión de 7,62, 13,2, 34,5 y 44 kV.
2 ALCANCE

La guía metodológica está enmarcada en la definición de conceptos, criterios, metodologías, cálculos y prácticas, que permitan la ejecución adecuada de los procesos de coordinación de protecciones de sobrecorriente en los niveles de tensión de 7,62, 13,2, 34,5 y 44 kV.
3 DOCUMENTOS DE REFERENCIA

Para la elaboración de la presente norma técnica se consultaron los siguientes documentos:

4 DEFINICIONES

4.1 GENERALES

Seguridad: Grado de certeza en el cual la protección de sobrecorriente no actuará para casos en los cuales no tiene que actuar. Un dispositivo de protección que no actúe cuando no es necesario, tiene un grado de seguridad mayor que otros que actúan de forma inesperada, cuando son otras protecciones las que deben actuar.

Selectividad: Propiedad del sistema de protección en la que el dispositivo más cercano a una falla permanente debe ser el que la despeje. Si dos o más dispositivos de protección se encuentran en serie, sólo el dispositivo que se encuentre más cercano a la falla debe operar en una falla permanente [1].

Sensibilidad: Capacidad del sistema de protección en la que debe ser lo suficientemente sensible para que opere con rapidez aún bajo fallas incipientes.

Sistema de Distribución en Anillo: Esquema que brinda una mayor confiabilidad en el servicio. El esquema parte de una fuente, con un circuito de distribución que recorre todo el sistema a alimentar y se vuelve a la misma barra formando un anillo.

Sistema de Distribución en Malla: En la distribución urbana en baja tensión se emplea el sistema mallado, especialmente en sistemas muy densos. En estos casos la distribución en media tensión es radial pero la distribución en baja tensión es una serie de anillos que siguen los recorridos de las calles. Estos anillos incluso pueden en caso de ser necesario interconectarse entre sí, asegurando de esta forma la restitución rápida del servicio en caso de falla de algún transformador.

Sistema de Distribución Radial: Esquema en que partiendo de una fuente la red se va ramificando en forma radial. Esta forma de distribución es la más económica y por tanto la más usada. La economía de este tipo de distribución radica en el hecho de que cuando se produce una ramificación, la sección de los conductores va disminuyendo. El inconveniente de este sistema es que, si hay una falla en uno de los alimentadores, se desenergiza la carga aguas abajo.

4.2 ELEMENTOS DE PROTECCIÓN DE SOBRECORRIENTE

Cortacircuito (cutout): Dispositivo utilizado para proteger ramales o derivaciones, así como transformadores de distribución, cuyo funcionamiento se basa en la apertura del dispositivo cuando la corriente que circula por él es excesiva (cortocircuito o sobrecarga). Consta de un soporte aislante, tubo portafusible y fusible.

Elemento Fusible: Es el dispositivo de sobrecorriente más común y económico en la protección de sistemas de distribución, cuya función es interrumpir y disponer de un ambiente dieléctrico para prevenir el restablecimiento del arco cuando la corriente de falla pasa por cero.
Fusible de expulsión: Fusible ventilado en el que el efecto de expulsión de los gases producidos por el arco interno, por su cuenta o con la ayuda de otros mecanismos, provoca la interrupción de la corriente. Un fusible de expulsión no es limitador de corriente y, por consiguiente, limita la duración de una falla en el sistema eléctrico, no la magnitud.

Fusible de potencia (PF): Fusible generalmente utilizado en aplicaciones trifásicas en subestaciones o celdas donde se suministra gran cantidad de energía a un sistema de distribución o alguna instalación que requiera grandes cantidades de energía y propiedades dieléctricas altas para todos los equipos [2].

Fusible dual: Fusible compuesto por dos elementos fusibles conectados eléctricamente en serie, contenido en un cuerpo fusible común que simultáneamente protege contra cortocircuitos y contra sobrecargas.

Fusible limitador de corriente: Fusible diseñado para interrumpir corrientes en un rango de corriente ya limitado, el cual reduce el nivel de falla a niveles sustancialmente bajos obtenidos del mismo circuito tal como si dicha porción fuese reemplazada por un conductor sólido de impedancia comparable.

Interruptor o disyuntor: Dispositivo de funcionamiento automático diseñado para proteger un circuito eléctrico de los daños causados por el exceso de corriente de una sobrecarga o cortocircuito. Su función básica es interrumpir el flujo de corriente después de recibir la señal de detección de falla desde el dispositivo relé. A diferencia de un fusible, que funciona una vez y luego debe remplazarse, un interruptor puede restablecerse (manual o automáticamente) para reanudar el funcionamiento normal.

Protector de red: Dispositivo tipo breaker con un mecanismo de cierre y disparo controlado por un circuito maestro, relé de fase y por fusibles de respaldo cuya función es proporcionar aislamiento automático de fallas que ocurren en el transformador de red o en el alimentador primario; proporcionar cierre automático bajo condiciones predeterminadas, por ejemplo cuando ha sido despejada una falla y cuando el flujo de potencia va desde el transformador hacia el circuito secundario y no al revés; proporcionar protección contra flujo de potencia inverso en los alimentadores primarios conectados a fuentes separadas y prevenir disparo de breakers con corrientes de excitación del transformador [1].

Relé electrónico: Dispositivo lógico cuya función es la comparación de una o varias señales de entrada con respecto a una referencia. Si los valores de entrada se desvían de la referencia por encima de un valor de ajuste entonces se realiza una acción como disparo (apertura), cierre o alarma.

Reconectador: Dispositivo interruptor de fallas con capacidad para censar sobrecorrientes, interrumpirlas y recerrar automáticamente un número de veces predeterminado, con el objeto de despejar fallas temporales evitando la apertura prolongada de una línea ante una falla de esta naturaleza y ante condiciones transitorias de sobrecorriente, evitando así que algunos sectores permanezcan sin energía cuando la falla no lo amerita. En general, los reconectadores se clasifican tomando en cuenta si estos van a ser utilizados en sistemas monofásicos o trifásicos, si se van a controlar por medios hidráulicos o electrónicamente y por su tipo de medio de interrupción (vacío, aceite o SF6).
Seccionalizador electrónico: Dispositivo que automáticamente desconecta secciones en falla de un sistema de distribución eléctrico, normalmente es empleado en un sitio aguas-abajo de un equipo de protección. El seccionalizador cuenta las operaciones del equipo de protección después de detectar una condición de falla. Después de un número seleccionado de aperturas del equipo de protección asociado y cuando éste está abierto, el seccionalizador abre y aísla la sección en falla de la línea. No poseen capacidad de interrumpir corrientes de falla.

4.3 ACRÓNIMOS

FLC: Fusible Limitador de Corriente
TCC: Curvas características de tiempo-corriente (time-current-characteristic).
MCT: Curva de aclaramiento total (Maximum Clearing Time).
MMT: Curva de fusión mínima (Minimum Melting time).
NI: Curva Normal Inversa (IEC Standard Inverse Time curve)
VI: Curva Muy Inversa (IEC Very Inverse Time curve)
EI: Curva Extremadamente Inversa (IEC Extremely Inverse Time curve)
TC: Transformador de corriente
SAIDI: Tiempo promedio de duración interrupciones (System Average Interruption Duration Index)
5 COORDINACIÓN DE PROTECCIONES EN SISTEMAS DE DISTRIBUCIÓN RADIALES

La coordinación de protecciones es una ciencia basada en las prácticas y filosofía de las empresas prestadoras de servicio de energía, preferencias en la operación y requerimientos de los sistemas. En el caso de EPM, la norma técnica RA8-XXX establece las situaciones de coordinación típica que se presentan en las redes de distribución, basadas en la filosofía operativa implementada por EPM de salvar fusible.

Esta guía complementa los procedimientos teóricos de coordinación de protecciones de sobrecorriente en los niveles de tensión de 7,621, 13,2, 34,5 y 44 kV, para sistemas de distribución radiales de EPM.
6 COORDINACIÓN FUSIBLES

6.1 COORDINACIÓN FUSIBLE – FUSIBLE (EXPULSIÓN)

6.1.1 Método de coordinación por curvas tiempo-corr iente (TCC)

La coordinación de fusibles se basa en la coordinación de las curvas o características de fusión de TCC propias de cada tipo de fusible. Una curva tiempo-corriente muestra el tiempo requerido para que un determinado fusible se funda o aíse un circuito para el paso de distintas corrientes a través del fusible.

Una regla que se considera en la coordinación de fusibles es la siguiente: “el tiempo de aclaración del fusible que sirve de protección principal no debe ser superior al 75% del tiempo de fusión mínima del fusible de respaldo”. Esto logra la coordinación apropiada y previene daño al fusible de respaldo por cambios de temperatura y condiciones de precarga.

En la Figura 1 se presenta el diagrama unifilar de un alimentador A y dos ramales B y C protegidos todos con fusibles tipo T. En este diagrama también se indica la corriente máxima de carga y cortocircuito en cada punto del sistema [3].

Figura 1 Diagrama de red para coordinación de fusibles
La Figura 2, presenta las características MCT y MMT de los fusibles usados en los puntos A, B y C del sistema presentado en la Figura 1.

Figura 2 Curvas TCC de los fusibles del sistema [1]

El fusible 15 T ubicado en el punto C es de 23 A de corriente máxima permanente (1.5x15) y, por lo tanto, es adecuado para la corriente de carga del ramal (21 A). Para la corriente de falla en el punto C (1550 A) el fusible 15 T tiene un tiempo máximo de aclaración de 0,021 seg.

Para el punto B se debe seleccionar un fusible con corriente nominal mayor de 36 A, con capacidad de interrupción mayor de 1630 A y que coorde con el fusible 15 T. El fusible 20 T no es adecuado porque solo puede llevar 30 A en forma continua.

El fusible que le sigue es un 25 T que permite 38 A continuamente, pero este fusible opera para una falla en el punto C (1550 A) en 0,016 seg de su curva de fusión; por lo tanto, tampoco es el fusible adecuado para garantizar la coordinación. El fusible que se debe seleccionar es un 30 T ya que para la falla de 1550 a opera en 0,031 seg. La relación entre los puntos de operación de las características de aclaración del fusible 15 T con la de fusión del fusible 30 T es del 68% (0,021seg/0,031 seg = 0,68). Esta relación es satisfactoria debido a que no excede el factor del 75% mencionado anteriormente.
El fusible 80 T es adecuado para llevar continuamente 105 A y su capacidad de interrupción es mayor de 1800 A. Es necesario verificar que coordine con el fusible 30T del punto B. Para una corriente 1630 A (falla en el punto B) se tiene una relación de 0,051/0,16 que equivale al 32%.

6.2 COORDINACIÓN FUSIBLE LIMITADOR –FUSIBLE LIMITADOR

Al igual que en la coordinación con fusibles de expulsión, el fusible limitador de corriente (FLC) que actúa como protección principal deberá aclarar la corriente máxima de falla en su localización antes de que el fusible de respaldo se vea afectado. En este sentido, se deben considerar dos referencias de tiempo [2]:

6.2.1 Método de coordinación por curvas tiempo-corriente (TCC) / I²t

Por encima de 0,01 segundos: para prevenir el daño del fusible de respaldo, el tiempo total de aclaración (MCT) de la protección principal debe ser menor que el 75% del tiempo mínimo de fusión (MMT) del fusible de respaldo para todas las corrientes hasta la corriente máxima de falla donde está ubicado el fusible que actúa como protección principal.

Por debajo de 0,01 segundos: la coordinación también debe ser evaluada. Con altas corrientes de falla, los fusibles limitadores son capaces de interrumpir en menos de 0,01 segundo, lo cual es el menor tiempo mostrado por las curvas TCC de los fusibles. Si la curva TCC de los dos fusibles no se intersectan por encima de la línea de 0,01 segundos y la corriente de falla es de suficiente magnitud, tal que la corriente queda al lado derecho de la curva de fusión del fusible de respaldo, la coordinación para dichos niveles de falla debe verificarse. En este caso, la coordinación debe evaluarse a través del uso de las curvas de energía I²t. Lo anterior se conoce como coordinación I²t. Para una adecuada coordinación, el 75% de la energía mínima I²t del fusible de respaldo debe ser mayor que la energía máxima I²t de fusible principal.

A modo de ejemplo, se requiere evaluar la coordinación entre dos fusibles limitadores tipo backup. La protección principal es un fusible de 50 A ubicada en un nivel de cortocircuito de 2.0 kA. La protección de respaldo es un fusible de 100 A. Ambos, marca Schneider.
La Figura 3, refleja las curvas MMT de los fusibles limitadores marca Schneider.

Figura 3 Curvas TCC FLC 3.6-7.2-12-17.5-24-36 kV [5]
Examinando la coordinación por encima de 0.01 segundos se observa que:

Relación tiempos en 500 A: \(MCT_1 \) (50 A) = 0.07 + 0.05 = 0.15 seg (se asume 50 ms adicionales al tiempo MMT).

Relación tiempos en 500 A: \(MMT_2 \) (100 A) = 1.5 seg

Se debe garantizar que: \(MCT_1 < 0.75 \times MMT_2 \)

Luego:

\[0.12 \text{ seg} < 0.75 \times 1.5 \text{ seg} \text{ ó } 0.12 \text{ seg} < 1.125 \text{ seg} \]

Con lo cual se garantiza coordinación en todo el rango de corrientes.

La coordinación por debajo de 0.01 segundos debe verificarse debido al valor de nivel de cortocircuito el cual queda al lado derecho de la curva del fusible de respaldo. Para una adecuada coordinación, el 75% de la energía mínima \(i^2t \) del fusible de respaldo debe ser mayor que la energía máxima \(i^2t \) de fusible principal.

De los datos del fabricante se tiene que:

\[i^2t \text{ máxima (fusible 50 A)} = 3,8 \times 10^4 \]
\[i^2t \text{ mínima (fusible 100 A)} = 1,0 \times 10^5 \]

Luego:

\[0.75 \times 1,0 \times 10^5 > 3,8 \times 10^4 \text{ ó } 7,5 \times 10^4 > 3,8 \times 10^4 \]

Dado lo anterior, se deduce que ambos fusibles coordinarían perfectamente.

6.3 COORDINACIÓN FUSIBLE LIMITADOR – FUSIBLE EXPULSIÓN

Este método de protección se emplea a menudo con el fin de permitir que fallas de bajo valor de corriente sean aclaradas por un fusible de expulsión de bajo costo. Cuando una falla de alta corriente ocurre dentro del equipo que está siendo protegido, el fusible limitador actúa para limitar la energía disponible [2].

Dado lo anterior, es importante que el fusible de expulsión aclare las fallas de baja corriente sin dañar el fusible limitador de corriente (FLC). Para esto el punto de cruce establecido a niveles de corriente más altos que el ratado de interrupción mínimo para el FLC de tipo backup.

6.3.1 Método de coordinación por curvas tiempo-corriente (TCC) / \(i^2t \)

En este esquema de coordinación, la curva de MCT del fusible de expulsión (protección principal) debe ser comparada con la curva ajustada (reducida en tiempo al 75%) de mínima fusión del fusible limitador (respaldo). Dado que los fusibles de expulsión aclaran las fallas cuando ocurre un cruce por cero, el tiempo mínimo de aclaración total para altas corrientes está entre 0.5 a 0.8 de un ciclo dependiendo del punto sobre la onda de voltaje con que comenzó la falla.
Por lo tanto, la familia de curvas de aclaración total (MCT) para un fusible de expulsión eventualmente convergen en una línea horizontal a 0.8 de ciclo (0.014 seg), lo cual es generalmente denominado “tiempo mínimo para la coordinación segura”. Como resultado de esta convergencia, la curva MCT del fusible de expulsión siempre cruzará la curva de fusión del elemento respaldo. Por tanto, este método proveerá coordinación únicamente hasta un nivel de corriente definido (máximo punto de coordinación). Corrientes más altas producirán operación simultánea de los dos fusibles.

La Figura 4 presenta las características de operación de un fusible limitador 63 A tipo backup marca Schneider que debe coordinar con un fusible de expulsión 15 T que sirve como protección principal para bajas corrientes. De acuerdo con las curvas, el punto máximo de coordinación se logra hasta una corriente de falla de 500 A.

Figura 4 Coordinación FLC - Fusible expulsión 15T [3]

6.4 COORDINACIÓN FUSIBLE EXPULSIÓN – FUSIBLE LIMITADOR

La curva de aclaramiento total (MCT) del fusible limitador (protección principal) debe quedar a la izquierda de la curva de fusión mínima del fusible de expulsión (curva MMT ajustada en tiempo por un factor del 75%) para todos los valores de corriente hasta la máxima corriente de falla disponible en el punto de instalación del fusible limitador, recordando que las curvas TCC para FLC no son estandarizadas y varían de acuerdo con el fabricante y tipo de fusible.
6.4.1 Método de coordinación por curvas tiempo-corriente (TCC) / I^2t

De acuerdo con IEEE Std C37.48 [2], una forma conveniente de verificar gráficamente el 75% de la curva MMT del fusible respaldo con la curva MCT del fusible principal, es verificar alineando la curva MMT para 4 segundos del fusible aguas arriba con la curva MCT de 3 segundos del fusible de expulsión (respaldo).

Para efectos de coordinación entre fusibles limitadores u otro tipo de fusibles, es de especial importancia el conocer los valores I^2t de mínima de fusión y máxima aclaramiento que poseen los fusibles.

Si la corriente de falla máxima disponible donde está ubicado el fusible limitador de corriente es mayor que la corriente donde la curva de aclaración total (MCT) del fusible limitador cruza la línea de 0.01 segundos, se debe verificar que el máximo I^2t del fusible limitador sea menor que el 75% del I^2t mínimo calculado del fusible de expulsión (ajustado).

El mínimo I^2t para el fusible de expulsión puede ser obtenido al elevar al cuadrado la corriente en 0.0125 segundos y multiplicando este valor por 0.0125 segundos. Claro está que si se conoce el dato del fabricante deberá emplearse dicho dato.

La Figura 5 presenta las características de operación TCC de un fusible limitador 80 A tipo general que debe coordinar con un fusible de expulsión 150T que sirve como protección de respaldo. La corriente de falla máxima disponible es de 5000 A.

Figura 5 Coordinación fusible expulsión / fusible FLC [2]

![Diagrama de coordinación TCC](image)

Para chequee la coordinación fueron graficadas las curvas MCT del fusible FLC de 80 A y la curva ajustada (factor 75%) MMT del fusible de expulsión 150T. Dado que las curvas no se cortan se deduce que existe coordinación entre ellas.
Dado que la máxima corriente de falla de 5000 A es más grande que el valor de corriente donde la curva MCT del FLC corta la línea de 0.01 segundos, el i^2t máximo del FLC debe ser comparado con el 75% del mínimo i^2t del fusible 150T.

El máximo i^2t del FLC es de 181×10^3 A2 seg, de acuerdo con lo especificado con el fabricante. La curva MMT del fusible 150T cruza la línea de 0.0125 segundos en aproximadamente 7000 A, por lo tanto:

\[(7000)^2 \times (0.0125) \times (0.75) = 460 \times 10^3 \text{ A}^2 \text{ seg}\]

Luego:

\[181 \times 10^3 \text{ A}^2 \text{ seg} < 460 \times 10^3 \text{ A}^2 \text{ seg}\]

Dado que el i^2t del FLC es menor que el i^2t del fusible de expulsión, desde el punto de vista de energía existe coordinación entre los fusibles.
7 COORDINACIÓN RELÉS

7.1 COORDINACIÓN RELÉ – FUSIBLE

Para la coordinación con los fusibles, se deben tener muy presentes las curvas de ajustes que posee el relé de la subestación, especialmente las curvas temporizadas de fase (I>), temporizada de neutro (In>) y los ajustes de los instantáneos (I>>1, I>>2, I>>3).

Para la coordinación con las curvas temporizadas, el objetivo es asegurar que la curva de relé sea más lenta que la curva del fusible, tal que la operación del fusible aísle la falla antes que el relé actúe con su curva. Así el circuito es protegido de una falla permanente y solo una pequeña porción del circuito quedaría sin servicio.

Para una adecuada coordinación, se debe asegurar que el máximo tiempo de aclaración del fusible (curva MCT) no exceda el tiempo de disparo del relé. Un margen de 0.2 a 0.3 segundos entre la curva MCT del fusible y la curva temporizada del relé debe darse para permitir los márgenes de error en los CT, así como errores de ajuste y tolerancias de fabricación. Para corrientes menores de tres veces la corriente de arranque, es aceptable un margen de tiempo del 10% [3].

Otro aspecto que se debe evaluar es la coordinación de la curva mínima de fusión del fusible (MMT) con la curva instantánea del relé la cual es utilizada conjuntamente con la función del recierre para efectos de despejar las fallas transitorias en el circuito y de esta forma evitar que el fusible se dañe (política de salvar fusible). Para este caso, se debe asegurar que el tiempo de operación del relé en su curva instantánea (I>>1) más el tiempo de apertura del interruptor (típicamente entre 50 – 60 ms), sea más rápido que la curva de fusión del fusible (MMT) afectada por un factor del 75% para efectos de considerar el impacto de la temperatura ambiente, corriente de carga y deterioro por sobrecorrientes.

El cruce entre la curva instantánea del relé y la curva de fusión del fusible (MMT) indica el rango de protección a partir del cual ya no existe posibilidad de salvar el fusible por lo que puede presentarse que este se queme o haya apertura simultánea con el interruptor.
Considerando la red de la Figura 6, se presentan los casos donde es posible garantizar la operación coordinada relé – fusible implementando operación instantánea para despeje de fallas temporales y el caso en el que no es posible implementar el esquema de salvar fusible.

Figura 6 Ejemplo coordinación relé-fusible

![Diagrama de coordinación relé-fusible](image)

En la Figura 7, se presenta el caso en que el fusible se fundirá antes de que funcione la sobrecorriente instantánea para $I_k = 9000 \, A$ en la ubicación del fusible “B”. En este caso, el esquema de salvar fusibles no puede ser implementado y por lo tanto la función de sobrecorriente instantánea no debe ser habilitada.

Figura 7 Coordinación relé-fusible (fusión fusible) [6]

![Diagrama de coordinación relé-fusible](image)
En la Figura 8, se presenta el ejemplo de coordinación con la filosofía “salvar fusible”, en la que el fusible “B” del diagrama mostrado en la Figura 6, no se fundirá antes de que funcione la protección sobrecorriente instantánea ubicada en el relé “A” para una corriente de falla $I_k = 9000$ A en la ubicación del fusible “B” (punto de falla 1 en la derivación lateral).

Figura 8 Coordinación relé-fusible (salvar fusible) [6]

Para el caso de fallas sobre el troncal principal del circuito, la protección estará gobernada por las curvas instantáneas y temporizadas de fase y neutro.

Para las fallas con corrientes menores a la función de arranque del instantáneo ($I>>1$) del relé (fallas de alta impedancia), es decir, corrientes menores a 520 A o 390 A (dependiendo del transformador de corriente del circuito), la protección del circuito dependerá de lo siguiente:

- Si la falla involucra la tierra o el neutro, el disparo del interruptor se haría con la curva temporizada ajustada para el neutro ($In>$) para corrientes en el rango entre 150 A a 390 A (o 520 A si el TC es de 400 A).

- Si la falla no involucra la tierra o el neutro, el disparo del interruptor se haría con la curva temporizada de fases ($I>$) para corrientes en el rango entre 300 A a 390 A (si el TC es de 300 A) o para corrientes en el rango entre 400 A a 520 A (si el TC es de 400 A)
7.2 COORDINACIÓN RELÉ – RECONECTADOR

Como se menciona en la norma RA8-XX, las fallas en el ramal protegido por el reconectador deben ser despejadas por este; para ello se fijan valores de disparo más rápidos en el reconectador, de tal forma que actúe primero, y el interruptor quede a la expectativa de la ejecución de los recierres o disparos en su curva rápida. De esta forma, el relé opera como protección de respaldo para fallas en el ramal protegido por el reconectador, y opera como protección principal ante fallas en el troncal principal del circuito y en aquellos ramales no protegidos por el reconectador.

La Figura 9 ilustra la coordinación entre un reconectador hidráulico McGraw Edison tipo 6H con las curvas de ajuste que posee el relé del circuito. El reconectador se encuentra ajustado con curva rápida tipo A y curva lenta tipo C y bobina de 100 A. De acuerdo a datos del fabricante, el nivel de cortocircuito máximo al cual se puede instalar el reconectador deberá ser menor a los 2.0 kA. La Figura 9 muestra que para fallas inferiores a los 2.5 kA existirá coordinación entre el reconectador y la curva temporizada de neutro del relé de la subestación.

Figura 9 Coordinación relé - reconectador [3]
8 COORDINACIÓN RECONECTADORES

8.1 COORDINACIÓN RECONECTADOR – FUSIBLE

La Figura 10 presenta un ejemplo de coordinación para un circuito de distribución protegido con reconectador en el lado de la fuente y fusibles aguas abajo en los ramales. También se indican las corrientes de falla y de carga al principio y al final de cada tramo del circuito.

Figura 10 Coordinación reconectador – fusible

Si la falla transitoria está entre los puntos 3 y 1 debe operar primero el reconectador en su curva rápida, y si la falla es permanente debe operar el fusible F2. Una coordinación similar se haría entre el reconectador y el fusible F1 para fallas entre 3 y 2.

En la subestación se considera un reconectador con una bobina de disparo de 140 A (corriente de carga 90 A), una secuencia de operación de dos recierres rápidos y dos lentos, intervalos de recierre de 2.0 s (120 ciclos), una corriente de ruptura de 4000 A (corriente de corto de 1650 A) y una mínima corriente de disparo de 280 A (la mínima corriente de falla es 340 A en el punto 2).

Para asegurar que el reconectador dispare para una falla transitoria sin dañar los fusibles, la curva de mínima fusión del fusible debe ser comparada con la curva rápida del reconectador, multiplicando la curva del reconectador por un factor multiplicador para prevenir daños en el fusible. El factor es de 1.35 teniendo en cuenta que el reconectador tiene dos operaciones rápidas y dos lentas con intervalos de recierre de 2.0 s (120 ciclos ver Tabla 1).

Tabla 1 Factor K de ajuste reconectadores [4]

<table>
<thead>
<tr>
<th>Tiempo de recierre (ciclos)</th>
<th>Factor K</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Una operación rápida</td>
</tr>
<tr>
<td>25-30</td>
<td>1.25</td>
</tr>
<tr>
<td>60</td>
<td>1.25</td>
</tr>
<tr>
<td>90</td>
<td>1.25</td>
</tr>
<tr>
<td>120</td>
<td>1.25</td>
</tr>
</tbody>
</table>
En la Figura 11 se compara el ajuste de la curva rápida del reconectador (curva A x 1,35) con las curvas de mínima fusión de varios fusibles tipo T. El fusible 20 T tiene un cruce con la curva del reconectador en 1000 A, lo que no es satisfactorio teniendo en cuenta que el nivel de falla indicado es de 1190 A. El fusible 30 T, por otra parte, sí coordinaría hasta fallas de 1500 A y los fusibles 40 T y 50 T tienen aún mayor valor de coordinación a 2100 A y 2800 A.

Figura 11 Curva rápida reconectador - curvas MMT fusibles T [4]

![Curva rápida reconectador - curvas MMT fusibles T](image)

El siguiente paso es revisar la coordinación para fallas permanentes, comparando las curvas de máximo tiempo de aclaración del fusible con la curva lenta del reconectador.
La Figura 12 muestra que una coordinación completa puede ser lograda con cualquiera de estos tres fusibles (30 T, 40 T y 50 T). Los fusibles se fundirían y aclararían para el rango de corriente de falla dado, sin provocar un disparo del reconectador.

Figura 12 Curva lenta reconectador - curvas MCT fusibles T [4]

La selección del fusible puede ahora realizarse. Una forma podría ser seleccionar el tamaño del fusible para cada ramal, basados en la corriente de carga. Por ejemplo, el fusible 30 T podría usarse para el punto F1 y para cualquier otro ramal donde la corriente de carga sea menor a 30 A; y el fusible 40 T para el punto F2 y para cualquier otro ramal con corrientes pico de carga entre 30 y 40 A.

Sin embargo, este método haría necesario que las cuadrillas de daños llevaran diferentes tamaños de fusibles y tomar las precauciones para instalar el tamaño apropiado para el sitio. El uso de fusibles más pequeños implica pérdida de coordinación, fatiga de los fusibles y operación innecesaria de estos ante las fallas.

Un acercamiento más simple sería seleccionar un único tamaño para todos los sitios. En este ejemplo, el fusible 40 T podría satisfacer los requerimientos para ambos puntos F1 y F2 y para cualquier ramal donde la corriente de carga no exceda los 40 A.
La Figura 13 indica que el fusible 40 T coordinaría con el reconectador de la subsección desde el disparo mínimo hasta 2100 A, que es bastante alejado de los 1650 A de la falla.

Figura 13 Curvas reconectador - fusible expulsión 40T [4]
8.2 COORDINACIÓN RECONECTADOR – RECONECTADOR

Una importante consideración cuando se coordinan reconectadores es el tiempo entre las curvas de los reconectadores. Diferentes tipos de reconectadores requieren tiempos mínimos entre curvas para evitar operaciones simultáneas. Entre reconectadores en serie, debe existir un factor de coordinación que considere el tiempo de energización de la bobina de disparo y la apertura de los contactos (caso tipo control hidráulico) [3].

8.2.1 Coordinación entre reconectadores de control hidráulico

8.2.1.1 Reconectadores de bajo voltaje operado con bobina de corte en serie

Su tiempo mínimo requerido entre las curvas de tiempo-corriente pueden variar dependiendo del tipo de reconector al ser coordinado con otro. Cuando dos reconectadores en serie operan con una separación entre las curvas de tiempo-corriente de menos de dos ciclos, se dará como resultado una operación simultánea de ambos elementos de protección, esto probablemente se dé entre reconectadores con separaciones entre dos y doce ciclos de operación entre sus curvas de tiempo-corriente, para reconectadores de más de doce ciclos de separación entre sus curvas de tiempo-corriente es casi imposible que se dé una operación simultánea de ambos reconectadores.

8.2.1.2 Reconectadores de alto voltaje con bobina de cierre de alto voltaje

La coordinación entre reconectadores de alta tensión es prácticamente igual a la de reconectadores de baja tensión con la única diferencia de la separación que se debe dar entre sus curvas de tiempo-corriente para evitar que ambos operen al mismo tiempo.

El tiempo requerido entre las curvas de tiempo corriente para este caso, cuando la separación entre las curvas de tiempo corriente sea de menos de dos ciclos se dará la operación simultánea de los dos reconectadores, se la separación entre las curvas de tiempo-corriente está entre dos y ocho ciclos, es muy probable que se dé la operación simultánea de los reconectadores, pero si la separación es de más de ocho ciclos es imposible que se dé la operación simultánea.

Un ejemplo de coordinación de reconectadores en serie con diferente capacidad de su bobina de disparo se presenta en la. Los tres reconectadores son ajustados con la misma secuencia de dos recierres rápidos (curva A) y dos recierres lentos (curva C).
Figura 14Diagrama reconectadores de distinta capacidad en bobina de disparo [4]

En la Figura 15 se presentan las características de operación de los reconectadores del ejemplo:

Figura 15 Curvas operación reconectadores de distinta capacidad en bobina de disparo [4]
Para una corriente de falla de 1000 A en la carga se produce disparo simultáneo de los tres reconectadores debido a que se tiene un factor de coordinación muy estrecho tanto en la curva rápida como en la lenta (factor de coordinación menor de 200 ms).

Si la falla es de 500 A, se tendría una operación simultánea de los tres reconectadores en su curva rápida, pero en caso de que la falla sea permanente, solo abre el reconectador con bobina de 50 A y despeja la falla.

Cuando se tienen reconectadores en serie con bobina de disparo de igual capacidad, se deben ajustar diferentes secuencias de recierre o diferentes curvas de operación para garantizar coordinación.

Por ejemplo, en Figura 16 se tienen 3 reconectadores de 100 A. La secuencia de operación del reconectador del lado de la fuente se ajusta a un recierre rápido (curva A) y tres recierres lentos (curva C) y los reconectadores de la carga se ajustan para dos recierres rápidos (curva A) y dos recierres lentos (curva B).

Figura 16 Diagrama reconectadores de igual capacidad en bobina de disparo

Si ocurre una falla aguas abajo del reconectador de la carga operarían los tres reconectadores en su curva rápida (A), pero en el segundo ciclo de recierre operaría primero el reconectador del ramal fallado en la curva rápida (A) y como respaldo operaría el reconectador de la fuente en la curva lenta (C).

En caso de que la falla sea permanente, en el tercer ciclo de recierre, operaría primero el reconectador de la carga fallada en la curva lenta (B) y como respaldo operaría el reconectador de la fuente en la curva lenta (C).

8.2.2 Coordinación entre reconectadores de control electrónico

Para que la coordinación entre reconectadores con control electrónico se dé adecuadamente se debe tener en cuenta el intervalo de recierre, el intervalo de reposición, el nivel de corte mínimo para fallas a tierra, fallas fase a fase, secuencia y elección de las curvas de tiempo-corriente, rangos de voltaje, capacidad de corriente continua establecida para los reconectadores en la línea que se encuentran protegiendo, así como todos los accesorios requeridos.
Es importante recordar que el intervalo de recierre “es el tiempo que los contactos del reconectador permanecen abiertos” y el intervalo de reposición “es el tiempo requerido por el reconectador para llevar a cabo una nueva secuencia de operación, luego de haber despejado una falla temporal”

Para obtener el tiempo de corte mínimo, se utiliza la curva de corte a tierra, si el reconectador tiene el equipo suficiente para esto, si no se puede obtener la curva de corte a tierra, se emplean las curvas de fase.

Todos los parámetros se determinan después de haber realizado un análisis del sistema donde se va a realizar la coordinación, para que a la hora de escoger el nivel mínimo de disparo no afecte la capacidad máxima de corriente continua establecida. Esta es una diferencia con respecto a los reconectadores con control hidráulico, en los cuales el nivel mínimo de disparo y la capacidad de corriente continua son controlados por la bobina de corte serie y no escogidos como se da en el caso de control electrónico pues en estos los niveles requeridos se programan en el circuito de control del reconectador.

También se debe tener en cuenta que la corriente mínima de disparo debe superar a la corriente normal de carga y cualquier sobrecarga anticipada de tal forma que el reconectador actúe ante cualquier falla que se presente dentro de su zona de protección. Para el caso en el que se presenten fallas de carácter temporal en la línea, el reconectador que protege la subestación (del lado de la fuente) debe tener al menos una operación rápida.

Si se coordina el reconectador del lado de la fuente con el reconectador del lado de la carga se debe garantizar que el reconectador del lado de la carga tenga el mismo número de operaciones rápidas o más que el reconectador del lado de la fuente.

El retraso entre las curvas debe ser de tal forma que el reconectador del lado de la carga puede operar un bloqueo ante una falla permanente, sin que se cierre la unidad de disparo después que realice las operaciones rápidas.
8.3 COORDINACIÓN RECONECTADOR – SECCIONALIZADOR

El dispositivo seccionalizador detecta interrupciones de sobrecorriente y se abre después de que ocurran 1, 2 o 3 interrupciones de este tipo desde el dispositivo reconectador de respaldo. La operación del seccionalizador se da en dos pasos:

1. Cuando el seccionalizador detecta una corriente por encima de su nivel de activación, se arma (se prepara para contar). El conteo ocurre cuando la corriente a través del seccionalizador se interrumpe o cae por debajo de un valor umbral.

2. Si el número predeterminado de conteos se registra dentro de un período de tiempo definido, el seccionalizador se abre cuando el dispositivo de respaldo ha interrumpido el flujo de corriente al sistema.

La Figura 17 muestra una aplicación típica de coordinación reconectador-seccionalizador. Un seccionalizador está ubicado aguas abajo de un reconectador automático de circuitos.

Figura 17 Coordinación reconectador - seccionalizador

La coordinación básica entre el seccionalizador y el reconectador consiste en lo siguiente:

1. Establecer el nivel de actuación del seccionalizador proporcional al nivel de disparo del reconectador.

2. Programar al menos un conteo menos para el seccionalizador que la cantidad de disparos para bloquear el reconectador de respaldo. En este caso, el reconectador podría configurarse para cuatro operaciones de bloqueo y el seccionador para su máximo de tres conteos.

Si se produce una falla en la línea aguas abajo desde el seccionalizador en su zona de protección normal, el seccionalizador y el reconectador de respaldo detectan la corriente de falla. El seccionalizador se arma para contar con la sobrecorriente. El reconectador dispara y desenergiza la línea. La corriente a través del seccionador se interrumpe y el seccionalizador cuenta.

Si la falla es temporal, puede ser solucionada por las dos primeras operaciones rápidas del reconectador. Dado que ni el reconectador ni el seccionalizador han completado su secuencia completa de operaciones, ambos se restablecerán para otra secuencia completa.
Si la falla es permanente, el reconectador continúa a través de sus operaciones programadas y el seccionalizador cuenta cada operación de disparo. Después de que el reconectador se haya disparado por tercera vez, el seccionalizador completa su secuencia de conteos, abre y aísla la falla. El reconectador restaura el resto del sistema al volver a cerrar y, dado que no ha alcanzado su número programado de operaciones para el bloqueo, se reinicia para otra secuencia completa.