NC - RA2 - 404. NORMA DE CONSTRUCCIÓN RED AÉREA NIVEL DE TENSIÓN 13.2 kV VERTICAL TRIFÁSICA. CONFIGURACIÓN TERMINAL

Fecha		2020-06-29
Revisión	0	0
Naturaleza del cambio		Creación de la norma
	chec	Área Proyectos - CET
	CENS	Área Proyectos - CET
Elaboró	edeo As everyth de number gener	Área Gestión Operativa - CET
	ESSA	Área Proyectos - CET
	epm Unidad CET Normalización y Laboratorios	
Revisó		Unidad CET Normalización y Laboratorios
Aprobó		Gerencia Centros de Excelencia Técnica

ENERGÍA	NORMA TÉCNICAS	NC - RA2 - 404	REV 0
Grupo-epm°	NC - RA2 - 404. NORMA DE CONST TENSIÓN 13.2 kV VERTICAL. (

CENTROS DE EXCELENCIA TÉCNICA UNIDAD NORMALIZACIÓN Y LABORATORIOS

A

1 OBJETIVO

Definir la configuración básica de la estructura en vertical denominada NC-RA2-404 del Grupo EPM, teniendo en cuenta las condiciones límites resultantes del análisis electromecánico de las estructuras.

2 ALCANCE

Esta norma es aplicable en el diseño de redes con niveles de tensión a 13.2 kV, del sistema de distribución del Grupo EPM.

Este documento está dirigido a ingenieros y técnicos, encargados del diseño, construcción y mantenimiento.

3 GENERALIDADES

La presente norma se sustenta teóricamente en el documento *GM-12 Guía metodológica:* cálculos mecánicos de estructuras y elementos de sujeción Grupo EPM y sus anexos. Es aplicable a todas las condiciones climáticas y meteorológicas encontradas en las áreas de influencia del Grupo EPM en Colombia. La norma ha sido elaborada con base en las condiciones de clima cálido, altitudes hasta 1000 msnm y velocidad de viento máxima de 100 km/hora, siendo estas las condiciones más desfavorables para el diseño de las estructuras. No obstante, no limita al diseñador de la red para evaluar otras condiciones particulares por medio de la metodología definida en el documento GM-12.

La estructura se evalúa en condición normal como hipótesis de carga (conductores y cable de guarda sanos en condición de viento máximo).

El análisis electromecánico emplea poste de concreto de 12m y 1050kgf monolítico; no obstante, podrán ser empleados postes de igual longitud y capacidad de poliéster reforzado con fibra de vidrio (PRFV) o metálico (acero).

Cuando se requiera cumplir con distancias verticales de seguridad en zonas de cultivo o arborizadas, se podrá implementar el uso de postes de mayor longitud (14 m y 16 m) conservando como mínimo la capacidad mecánica definida.

En esta norma se implementa aislador suspensión en porcelana, 15kV, ANSI C29.2, clase 52-1, tipo clevis. Podrán emplearse, también, aisladores de vidrio de la misma clase. En zonas de contaminación fuerte (IV), muy fuerte (V) o costera se debe utilizar en las cadenas un aislador de suspensión adicional por fase o aislador polimérico ANSI 29.13 tipo DS-28, tipo clevis lengüeta.

Los conductores utilizados en la verificación de esta norma son tipo ACSR (Conductor de aluminio con refuerzo de acero), sin embargo, lo que se concluye para este tipo de conductor es aplicable a los conductores equivalentes tipo AAAC (Conductor de aleación de aluminio), los calibres utilizados son:

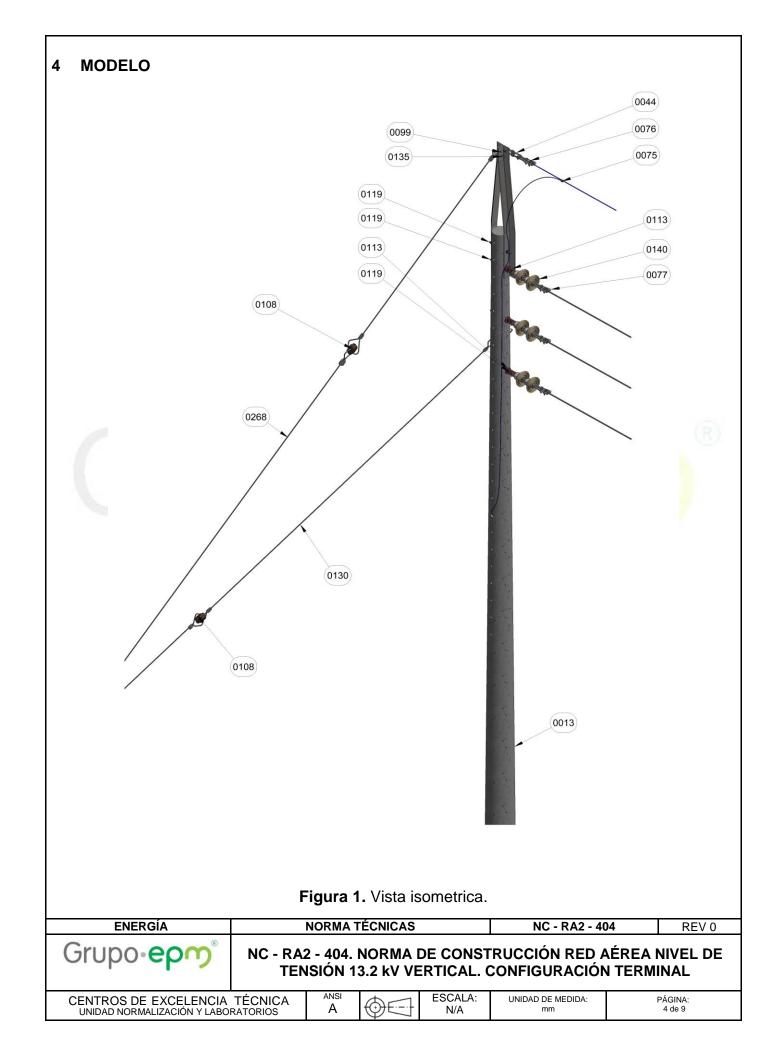
ENERGÍA	1	NORMA TÉCNICAS			NC - RA2 - 40	14 REV 0
Grupo-epm°			_		RUCCIÓN RED A CONFIGURACIÓN	ÁÉREA NIVEL DE I TERMINAL
	ROS DE EXCELENCIA TÉCNICA		⊕ €-1	ESCALA: N/A	UNIDAD DE MEDIDA: mm	PÁGINA: 2 de 9

Tabla 1. Calibres de conductores para redes a 13.2 kV.

a ii canbice de cendacteres para redes a re				
ACSR	AAAC			
2 AWG (Sparrow)	77.47 kcmil (Ames)			
1/0 AWG (Raven)	123.3 kcmil (Azusa)			
2/0 AWG (Quail)	155.4 kcmil (Anaheim)			
4/0 AWG (Penguin)	246.9 kcmil (Alliance)			
266.8 kcmil (Waxwing)	312.8 kcmil (Butte)			

En los montajes con bayoneta se utilizará cable de acero recubierto de aluminio 7x8 AWG como cable de guarda. Como cable neutro se utilizará 2 ACSR (GA o AW) para conductores de fase de calibre 2 AWG, 1/0 ACSR (GA o AW) para conductores de fase de calibre hasta 2/0 AWG, para calibres de cables de fase superiores a 2/0 AWG se utilizará cable neutro de 2/0 ACSR (GA o AW).

La norma técnica RA6-022 describe en detalle las acciones que se deben ejecutar sobre las redes de distribución de energía que se ubican en zonas especiales.


La estructura debe estar acompañada de un sistema de puesta a tierra, de acuerdo con los requisitos de la norma RA6-010 "Puesta a tierra de redes de distribución eléctrica". En todo caso, las redes con neutro corrido o cable de guarda deben estar puestas a tierra sólidamente cada 3 apoyos y, en las estructuras terminales.

Los vientos o retenidas se deben construir de acuerdo con los detalles de instalación y materiales que se describen en la norma técnica RA6-001 "Instalación de vientos o retenidas".

Durante la implementación de esta norma se debe tener en cuenta la constitución o definición de la zona de servidumbre de acuerdo con la norma técnica RA6-040 "Distancias de seguridad y servidumbres en redes de distribución".

Cuando sea necesario realizar un cambio en alguno de los criterios o variables consideradas, el diseñador o constructor deberá remitirse al documento GM-12 Guía metodológica: cálculos mecánicos de estructuras y elementos de sujeción Grupo EPM y sus anexos.

ENERGÍA	NORMA TÉCNICAS	NC - RA2 - 404	REV 0
Grupo• ep m®	NC - RA2 - 404. NORMA DE CONST TENSIÓN 13.2 kV VERTICAL. (_	

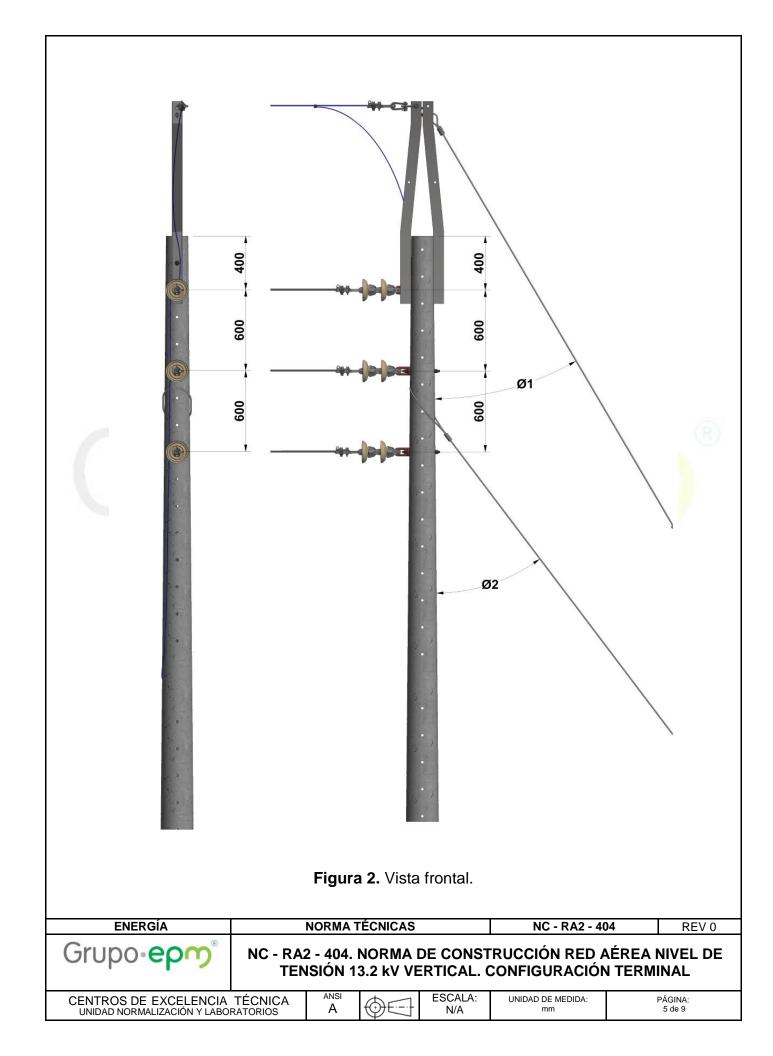


Figura 3. Vista en planta.

5 LISTADO DE MATERIALES

Tabla 2. Listado de materiales estructura NC-RA2-404

Tabla 2: Listade de matemates estructura 140 1772 404							
CÓDIGO IDENTIFIC.	DESCRIPCIÓN TÉCNICA	REFERENCIA	CÓDIGO JDE	CANTIDAD POR MONTAJE			
IDENTIFIC.			JDE	а	b	С	d
0013 ⁽¹⁾ (ver tabla 3)	Poste de concreto de 12 m y 1050 kgf monolítico	ET-TD-ME04-01	200016	1	1		
0044	Eslabón en u 5/8" forjado galvanizado	ET-TD-ME03-11	211318		2		1
0076	Grapa de retención aluminio recta 4 AWG a 2/0 AWG	ET-TD-ME03-16	213335	¥	1		
0077 (ver tabla 3)	Grapa de retención aluminio recta 2/0 AWG a 266.8 Kcmil	ET-TD-ME03-16	213336	3	3		
0099	Tornillo de máquina cabeza hexagonal acero galvanizado 5/8" X 1 1/2"	ET-TD-ME03-17	211438		1		
0108	O108 Aislador tensor porcelana 15 kV 4 1/4" ANSI C29.4 clase 54-2		200156	1	2		
0113	Tuerca de ojo alargada 5/8"	ET-TD-ME03-09	211356	3	3		
0119	Esparrago 5/8" x 12"	ET-TD-ME03-19	211392	3	4		
0128	Bayoneta metálica doble 1500mm x 3" x 3" x 1/4"	ET-TD-ME03-03	211300		1		
0130 ⁽²⁾⁽³⁾⁽⁴⁾ (ver tabla 3)	Viento convencional a suelo cable de acero extra resistente diámetro 3/8"	RA6-001		1	1		
0135	Tornillo cáncamo macho acero forjado C15 11/16" x 5/16"	ET-TD-ME03-37	268390		1		
0140 (ver tabla 3)	Aislador suspensión porcelana 15 kV 6 1/2" ANSI C29.2 clase 52-1 clevis-lengüeta	ET-TD-ME02-01	200149	6	6		
0268(2)(3)(4)	Viento convencional a suelo o poste auxiliar cable de acero extra resistente diámetro 1/4"	RA6-001	-		1		

NOTAS:

- (1) Consultar el listado de artículos y agrupadores el número de artículo del poste requerido, según el material y características.
- (2) Los componentes y cantidades asociadas a la instalación de los vientos se detallan en la norma RA6-001: Instalación de vientos.
- (3) El diámetro del cable de viento cambia para conductores de fase de mayor peso, ver numeral 7.
- (4) El numeral 7 presenta información complementaria como ángulos y longitudes requeridas para la instalación del viento.

Donde:

- a → Montaje con viento y sin bayoneta
- b → Montaje con viento y con bayoneta

E	NERGIA	NORMA TECNICAS			NC - RA2 - 40	04	REV 0	
Grup	o-epm°	_		_		RUCCIÓN RED A CONFIGURACIÓN		
	S DE EXCELENCIA IORMALIZACIÓN Y LABO		ANSI A	\bigoplus	ESCALA: N/A	UNIDAD DE MEDIDA: mm	F	PÁGINA: 6 de 9

En esta norma también se permitirá el uso de los materiales mostrados en la Tabla 3 como opcionales.

Tabla 3. Materiales opcionales

	Table 91 Materiales opcionales		
OPCIÓN	DESCRIPCIÓN TÉCNICA	REFERENCIA	CÓDIGO JDE
0013	Poste fibra de vidrio 12 m 1050 kgf monolítico	ET-TD-ME04-01	200060
0013	Poste fibra de vidrio 12 m 1050 kgf seccionado	ET-TD-ME04-02	200061
0013	Poste metálico 12 m 1050 kgf seccionado	ET-TD-ME04-03	200082
0013	Poste concreto 14 m 1050 kgf monolítico	ET-TD-ME04-01	200023
0013	Poste fibra de vidrio 14 m 1050 kgf monolítico	ET-TD-ME04-02	200066
0013	Poste metálico 14 m 1050 kgf seccionado	ET-TD-ME04-03	200084
0013	Poste concreto 14 m 1050 kgf seccionado	ET-TD-ME04-01	215641
0013	Poste fibra de vidrio 14 m 1050 kgf seccionado	ET-TD-ME04-02	215648
0013	poste concreto 16 m 1050 kgf monolítico	ET-TD-ME04-01	200031
0013	poste fibra de vidrio 16 m 1050 kgf seccionado	ET-TD-ME04-02	215232
0013	poste metálico 16 m 1050 kgf seccionado	ET-TD-ME04-03	200085
0077	Grapa de retención aluminio recta 4AWG a 2/0AWG	ET-TD-ME03-16	213335
0077	Grapa de retención aluminio tipo pistola 2/0AWG a 266.8 kcmil	ET-TD-ME03-16	213341
0077	Grapa de retención aluminio tipo pistola 4/0AWG a 336.4 kcmil	ET-TD-ME03-16	217324
0130	Viento convencional a suelo cable de acero extra resistente diámetro 1/4"	RA6-001	
0140	Aislador suspensión polimérico 15 kV ANSI C29.13 clase DS-15 clevis- lengüeta	ET-TD-ME02-04	200138
0140	Aislador suspensión polimérico 23 kV ANSI C29.13 clase DS-28 clevis- lengüeta	ET-TD-ME02-04	200167
0140	Aislador suspensión polimérica 38 kV ANSI C29.13 clase DS-35 clevis- lengüeta	ET-TD-ME02-04	200140

6 TENSIONADO DEL CONDUCTOR

El cálculo mecánico de los conductores se muestra en el documento *GM-12 Guía metodológica:* cálculos mecánicos de estructuras y elementos de sujeción Grupo EPM y se hace para las siguientes condiciones limitantes.

- Hipótesis A. Máxima velocidad del viento (temperatura mínima y viento máximo).
- Hipótesis B. Mínima temperatura (temperatura mínima y sin viento).
- Hipótesis C. Operación Diaria (Tensión diaria promedio, EDS).
- Hipótesis D. Máxima flecha (Temperatura máxima, sin viento).

Los valores de tensión y flecha de los cables a diferentes temperaturas, para su tendido, se encuentran en el documento ANX-12D: Tablas de tendido de los cables desnudos. Mientras que, las condiciones mecánicas limitantes se encuentran en el documento ANX-12B: Tablas de cálculo mecánico de conductores.

ENERGIA		NORMA 1	FECNICAS		NC - RA2 - 40)4	REV 0
Grupo•epm°		_ :			RUCCIÓN RED A CONFIGURACIÓN		
CENTROS DE EXCELENCIA TÉCNICA UNIDAD NORMALIZACIÓN Y LABORATORIOS		ANSI A	⊕	ESCALA: N/A	UNIDAD DE MEDIDA: mm		GINA: de 9

7 PUNTOS DE DISEÑO

Montaje a: con viento y sin bayoneta

ACSR	AAAC	Vano máximo	Viento en V Fases	Ángulo Θ2 del viento en las fases
1/0 AWG (Raven)	123.3 kcmil (Azusa)	140m	1x 1/4"	30
2/0 AWG (Quail)	2/0 AWG (Quail) 155.4 kcmil (Anaheim)		1x 3/8"	30
4/0 AWG (Penguin)	246.9 kcmil (Alliance)	200m	1x 3/8"	30
266.8 kcmil (Waxwing)	312.8 kcmil (Butte)	160m	1x 3/8"	30

Vano máximo admisible en terreno plano de 130 m.

El vano máximo definido para cada conductor en la tabla anterior corresponde a la verificación de la estructura terminal sin bayoneta con viento.

El ángulo del viento con la vertical del poste de la estructura será mínimo de Θ2.

Montaje b: con viento y con bayoneta (cable de guarda o neutro)

ACSR	AAAC	Vano máximo	Viento en Fases	Viento en Bayoneta	Ángulo 0 1 del viento en la Bayoneta
1/0 AWG (Raven)	123.3 kcmil (Azusa)	200m	1x 1/4"	1x 1/4"	30
2/0 AWG (Quail)	155.4 kcmil (Anaheim)	200m	1x 1/4"	1x 1/4"	30
4/0 AWG (Penguin)	246.9 kcmil (Alliance)	200m	1x 3/8"	1x 1/4"	30
266.8 kcmil (Waxwing)	312.8 kcmil (Butte)	200m	1x 3/8"	1x 1/4"	30

Vano máximo admisible en terreno plano de 130 m.

El vano máximo definido para cada conductor en la tabla anterior corresponde a la verificación de la estructura terminal con viento convencional.

El viento instalado en la bayoneta y en la cruceta llegan al mismo punto en la superficie del terreno, y este punto es definido por el viento a mayor altura, es decir, el viento en la bayoneta, el ángulo del viento en la bayoneta con la vertical del poste será mínimo de Θ 1.

ENERGÍA	NORMA TÉCNICAS	NC - RA2 - 404	REV 0
Grupo-epm°	NC - RA2 - 404. NORMA DE CONST TENSIÓN 13.2 kV VERTICAL. (_	

8 **NOTAS GENERALES**

- 1. Todas las dimensiones, en las figuras, están dadas en milímetros.
- 2. En zonas con nivel de contaminación fuerte (IV), muy fuerte (V) o costera se debe utilizar conductores AAAC.
- 3. En zonas de contaminación fuerte (IV), muy fuerte (V) o costera se debe utilizar en las cadenas, un aislador de suspensión adicional por fase o aislador polimérico ANSI 29.13 tipo DS-28 tipo clevis lengüeta.
- 4. En zonas con nivel de contaminación fuerte (IV), muy fuerte (V) o costera se debe utilizar poste en poliéster reforzado con fibra de vidrio (PRFV). ET-TD-ME04-02.
- 5. En zonas con nivel de contaminación fuerte (IV), muy fuerte (V) o costera se debe emplear herrajes de acero inoxidable y estructuras PRFV.
- 6. En caso de que el poste no tenga las perforaciones indicadas en los planos, se podrá utilizar abrazadera o collarín fabricados según NTC 2663 con carga máxima a tensión de 30 KN y carga máxima cortante de 24 KN. Especificación técnica ET-TD-ME03-08.

ANEXOS

Tabla 4. Curvas de utilización por conductor montaje a

ACSR 1/0 AWG (RAVEN)		ACSR 2/0 AWG (QUAIL)		ACSR 4/0 AWG (PENGUIN)		ACSR 266.8 KCMIL (WAXWING)	
ÁNGULO	VV	ÁNGULO	VV	ÁNGULO	VV	ÁNGULO	VV
38.0	200.0	30.0	200.0	19.0	200.0	16.0	200.0
46.7	110.0	38.7	110.0	23.0	150.0	20.0	150.0
46.7	110.0	38.7	110.0	26.0	110.0	23.0	110.0
50.7	80.0	41.7	80.0	27.7	80.0	25.0	80.0
57.0	50.0	46.7	50.0	30.3	50.0	27.7	50.0
70.0	0.0	56.7	0.0	36.3	0.0	33.7	0.0

Tabla 5. Curvas de utilización por conductor montaje b

ACSR 1/0 AWG (RAVEN)		ACSR 2/0 AWG (QUAIL)		ACSR 4/0 AWG (PENGUIN)		ACSR 266.8 KCMIL (WAXWING)	
ÁNGULO	VV	ÁNGULO	VV	ÁNGULO	VV	ÁNGULO	VV
13.0	200.0	12.0	200.0	9.5	200.0	9.0	200.0
16.0	150.0	15.0	150.0	12.0	160.0	11.0	165.0
18.3	110.0	17.3	110.0	15.0	110.0	14.3	110.0
20.0	80.0	18.8	80.0	16.3	80.0	15.7	80.0
22.0	50.0	21.0	50.0	18.0	50.0	17.3	50.0
25.7	0.0	24.7	0.0	21.7	0.0	21.0	0.0

ENERGÍA	NORMA TÉCNICAS	NC - RA2 - 404	REV 0
Gruno e o o o o	NC - RA2 - 404 NORMA DE CONST	RUCCIÓN RED AÉREA I	VIVEL DE

CENTROS DE EXCELENCIA TÉCNICA UNIDAD NORMALIZACIÓN Y LABORATORIOS

TENSIÓN 13.2 kV VERTICAL. CONFIGURACIÓN TERMINAL