NC - RA2 - 102. NORMA DE CONSTRUCCIÓN RED AÉREA NIVEL DE TENSIÓN 13.2 kV DELTA. CONFIGURACIÓN ÁNGULO CON CRUCETA DE 1500 mm

Fecha		2020-06-29	
Revisión		0	
Naturaleza del cambio		Creación de la norma	
	chec	Área Proyectos - CET	
	CENS	Área Proyectos - CET	
Elaboró	edeg	Área Gestión Operativa - CET	
	ESSA	Área Proyectos - CET	
	epm®	Unidad CET Normalización y Laboratorios	
Revisó	Unidad CET Normalización y Laboratorios		
Aprobó		Gerencia Centros de Excelencia Técnica	

ENERGÍA	NORMA TÉCNICAS	NC - RA2 - 102	REV 0
Grupo-epm°	NC - RA2 - 102. NORMA DE CONST TENSIÓN 13.2 kV DELTA. CONFIGU DE 150	RACIÓN ÁNGULO CON	NIVEL DE CRUCETA

CENTROS DE EXCELENCIA TÉCNICA UNIDAD NORMALIZACIÓN Y LABORATORIOS ANSI A

ESCALA: N/A

UNIDAD DE MEDIDA:

PAGINA: 1 de 17

OBJETIVO

Definir la configuración básica de la estructura en delta denominada NC-RA2-102 del Grupo EPM, teniendo en cuenta las condiciones límites resultantes del análisis electromecánico de las estructuras.

ALCANCE

Esta norma es aplicable en el diseño de redes con niveles de tensión a 13.2 kV, del sistema de distribución del Grupo EPM.

Este documento está dirigido a ingenieros y técnicos, encargados del diseño, construcción y mantenimiento.

GENERALIDADES

La presente norma se sustenta teóricamente en el documento GM-12 Guía metodológica: cálculos mecánicos de estructuras y elementos de sujeción Grupo EPM y sus anexos. Es aplicable a todas las condiciones climáticas y meteorológicas encontradas en las áreas de influencia del Grupo EPM en Colombia. La norma ha sido elaborada con base en las condiciones de clima cálido, altitudes hasta 1000 msnm y velocidad de viento máxima de 100 km/hora, siendo estas las condiciones más desfavorables para el diseño de las estructuras. No obstante, no limita al diseñador de la red para evaluar otras condiciones particulares por medio de la metodología definida en el documento GM-12.

La estructura se evalúa en condición normal como hipótesis de carga (conductores y cable de guarda sanos en condición de viento máximo). El análisis mecánico de los postes considera un 10% adicional sobre la capacidad de estos, para tener en cuenta la instalación de infraestructura de telecomunicaciones.

El análisis electromecánico emplea poste de concreto de 12 m y 750 kgf monolítico; no obstante, podrán ser empleados postes de igual longitud y capacidad de poliéster reforzado con fibra de vidrio (PRFV) o metálico (acero).

Cuando se requiera cumplir con distancias verticales de seguridad en zonas de cultivo o arborizadas, se podrá implementar el uso de postes de mayor longitud (14 m y 16 m) conservando como mínimo la capacidad mecánica definida.

En esta norma se implementa aislador tipo pin de porcelana 15 kV ANSI C29.5 Clase 55-4. En zonas con nivel de contaminación fuerte (IV), muy fuerte (V) o costera se debe utilizar aisladores tipo line-post polimérico, 15kV, ANSI C29.18 clase 51-2F. Además, en zonas de alta densidad de descargas atmosféricas (DDT) se debe utilizar aisladores tipo line-post polimérico, ANSI C29.18 clase 51-4F.

En los casos en que se requiere cadena de aisladores, se utiliza aislador de suspensión en porcelana, 15kV, 6 1/2", ANSI C29.2, clase 52-1, tipo clevis. Podrán utilizarse también aisladores de vidrio de la misma clase. En zonas de contaminación fuerte (IV), muy fuerte (V) o costera se

ENERGÍA	NORMA TÉCNICAS			NC - RA2 - 102 RE			
Grupo epo NC - RA2 - 102. NORMA DE CONSTRUCCIÓN RED AÉREA N TENSIÓN 13.2 kV DELTA. CONFIGURACIÓN ÁNGULO CON C DE 1500 mm							
CENTROS DE EXCELENCIA UNIDAD NORMALIZACIÓN Y LABO		ANSI A	0	ESCALA: N/A	UNIDAD DE MEDIDA: mm		ÁGINA: de 17

debe utilizar en las cadenas un aislador de suspensión adicional por fase o aislador polimérico ANSI DS-28 tipo clevis. Además, en zonas de alta densidad de descargas atmosféricas (DDT) se debe utilizar aisladores poliméricos, ANSI DS-35 tipo clevis.

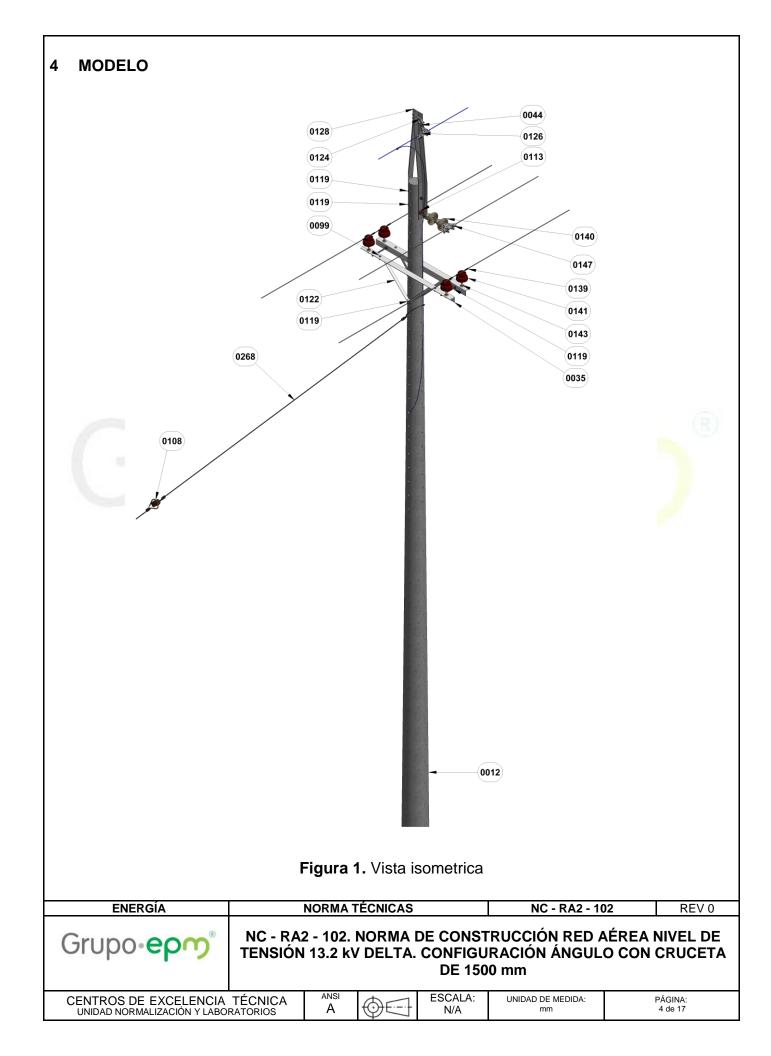
Los conductores utilizados en la verificación de esta norma son tipo ACSR (Conductor de aluminio con refuerzo de acero) y sus equivalentes tipo AAAC (Conductor de aleación de aluminio), los calibres utilizados son:

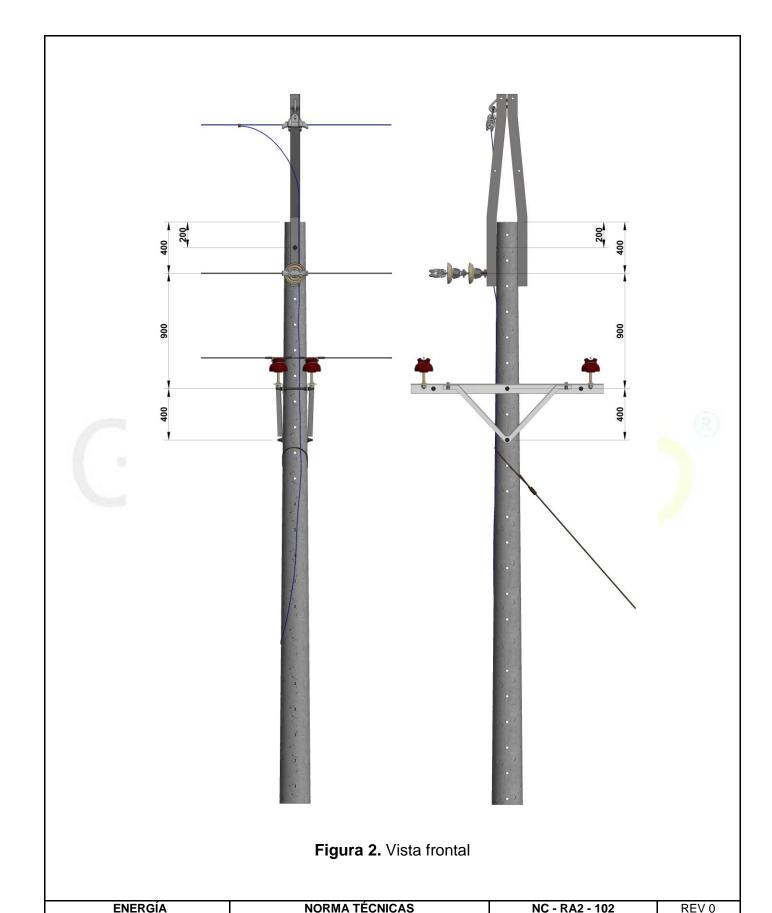
Tabla 1. Calibres de conductores para redes a 13.2 kV.

ACSR	AAAC
2 AWG (Sparrow)	77.47 kcmil (Ames)
1/0 AWG (Raven)	123.3 kcmil (Azusa)
2/0 AWG (Quail)	155.4 kcmil (Anaheim)
4/0 AWG (Penguin)	246.9 kcmil (Alliance)
266.8 kcmil (Waxwing)	312.8 kcmil (Butte)

En los montajes con bayoneta se utilizará cable de acero recubierto de aluminio 7x8 AWG como cable de guarda. Como cable neutro se utilizará 1/0 ACSR (GA o AW) para conductores de fase de calibre hasta 2/0 AWG, para calibres de cables de fase superiores a 2/0 AWG se utilizará cable neutro de 2/0 ACSR (GA o AW).

La norma técnica RA8-022 describe en detalle las acciones que se deben ejecutar sobre las redes de distribución de energía que se ubican en zonas especiales.


La estructura debe estar acompañada de un sistema de puesta a tierra, de acuerdo con los requisitos de la norma RA6-010 "Puesta a tierra de redes de distribución eléctrica". En todo caso, las redes con neutro corrido o cable de guarda deben estar puestas a tierra sólidamente cada 3 apoyos y, en las estructuras terminales.


Los vientos o retenidas se deben construir de acuerdo con los detalles de instalación y materiales que se describen en la norma técnica RA6-001 "Instalación de vientos o retenidas".

Durante la implementación de esta norma se debe tener en cuenta la constitución o definición de la zona de servidumbre de acuerdo con la norma técnica RA6-040 "Distancias de seguridad y servidumbres en redes de distribución".

Cuando sea necesario realizar un cambio en alguno de los criterios o variables consideradas, el diseñador o constructor deberá remitirse al documento *GM-12 Guía metodológica: cálculos mecánicos de estructuras y elementos de sujeción Grupo EPM y sus anexos*.

ENERGÍA	NORMA TÉCNICAS	NC - RA2 - 102	REV 0
Grupo-epm°	NC - RA2 - 102. NORMA DE CONST TENSIÓN 13.2 kV DELTA. CONFIGU DE 150	RACIÓN ÁNGULO CON	
	TOCALA.		,

LINLINGIA	NORMA I ECNICAS	NC - NAZ - 10Z	INE V U
Grupo•epm®	NC - RA2 - 102. NORMA DE CONST TENSIÓN 13.2 kV DELTA. CONFIGU DE 150	RACIÓN ÁNGULO CON	
	, ANGL . FOOALA		,

CENTROS DE EXCELENCIA TÉCNICA UNIDAD NORMALIZACIÓN Y LABORATORIOS

A

 $\bigcirc \bigcirc$

ESCALA: N/A UNIDAD DE MEDIDA:

PÁGINA: 5 de 17

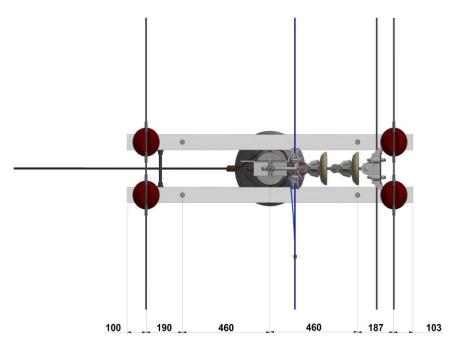


Figura 3. Vista en planta

LISTADO DE MATERIALES

Tabla 2. Listado de materiales estructura NC-RA2-102

CÓDIGO IDENTIFIC.	DESCRIPCIÓN TÉCNICA	REFERENCIA	CÓDIGO JDE		NTIDA MON		DR
IDENTIFIC.			JDE	а	b	С	d
0012 (1)	Poste de concreto de 12 m y 750 kgf monolítico	ET-TD-ME04-01	200015	1	1		
0014 (1)	Poste de concreto de 12m y 1350kgf monolítico	ET-TD-ME04-01	200017			1	1
0035	Cruceta metálica 1500 mm 3" X 3" X 1/4"	ET-TD-ME03-02	211274	2	2	2	2
0044	Eslabón en u 5/8" forjado galvanizado	ET-TD-ME03-11	211318		1		1
0099	Tornillo de máquina hexagonal acero galvanizado 5/8" X 1 1/2"	ET-TD-ME03-17	211438	4	4	4	4
0108	Aislador tensor porcelana ANSI C29.4 clase 54-2 15 kV 4 1/4"	ET-TD-ME02-01	200156	1	1		
0113	Tuerca de ojo alargada 5/8"	ET-TD-ME03-09	211356	1	1	1	1
0119	Esparrago 5/8" x 12"	ET-TD-ME03-19	211392	5	6	5	6
0122	Diagonal metálica en V 1 1/2" x 1 1/2" x 3/16"	ET-TD-ME03-04	211294	2	2	2	2
0124	Ojal de suspensión de 5/8" péndola	ET-TD-ME03-36	253930		1		1
0126 ⁽²⁾ (ver tabla 3)	Grapa de suspensión aluminio 4 AWG - 2/0 AWG	ET-TD-ME03-16	213343		1		1
0128 ⁽³⁾	Bayoneta metálica doble 1500 mm 3"x3"x1/4"	ET-TD-ME03-03	211300		1		1
0139 (4)	Alambre aluminio 4 AWG desnudo amarre	ET-TD-ME01-15	213943	8	8	8	8

L				
ĺ	ENERGÍA	NORMA TÉCNICAS	NC - RA2 - 102	REV 0

NC - RA2 - 102. NORMA DE CONSTRUCCIÓN RED AÉREA NIVEL DE TENSIÓN 13.2 kV DELTA. CONFIGURACIÓN ÁNGULO CON CRUCETA **DE 1500 mm**

CENTROS DE EXCELENCIA TECNICA	ANSI	$\Delta \Box$	ESCALA:	
UNIDAD NORMALIZACIÓN Y LABORATORIOS	А		N/A	ı

CÓDIGO IDENTIFIC.	DESCRIPCIÓN TÉCNICA	REFERENCIA	CÓDIGO JDE		NTIDA MON)R
IDENTIFIC.			JDE	а	۵	C	d
0140 (ver tabla 3)	Aislador suspensión porcelana 15 kV 6 1/2" ANSI C29.2 clase 52-1 clevislengüeta	ET-TD-ME02-01	200149	2	2	2	2
0141 (ver tabla 3)	Aislador pin porcelana 15 kV 5 1/2" ANSI C29.5 clase 55-4	ET-TD-ME02-01	200144	4	4	4	4
0143	Espigo corto para aislador tipo pin 10"x1 3/4"x3/4" rosca nailon 1 3/8" cruceta metálica	ET-TD-ME03-20	213695	4	4	4	4
0147 (ver tabla 3)	Grapa de suspensión aluminio 4 AWG a 2/0 AWG	ET-TD-ME03-16	217326	1	1	1	1
0268	Viento convencional para poste de 12m cable de acero extra alta resistencia calibre 1/4	RA6-001		1	1		

NOTAS:

- Consultar el listado de artículos y agrupadores el número de artículo del poste requerido, según el material y características.
- (2) Consultar el listado de artículos y agrupadores el número de artículo requerido, según el calibre del conductor.
- (3) En los casos donde la estructura no requiera apantallamiento, pero se deba instalar cable neutro, la bayoneta se podrá reemplazar por un espigo y un aislador tipo pin o poste según se requiera.
- (4) Las cantidades para los conductores están expresadas en la unidad de metros.

Donde:

- a → Montaje con viento y sin bayoneta
- b o Montaje con viento y con bayoneta para soportar el cable de guarda/neutro
- c → Montaje sin viento y sin bayoneta
- d o Montaje sin viento y con bayoneta para soportar el cable de guarda/neutro

En esta norma también se permitirá el uso de los materiales mostrados en la Tabla 3 como opcionales.

Tabla 3. Materiales opcionales

OPCIÓN	DESCRIPCIÓN TÉCNICA	REFERENCIA	CÓDIGO JDE
0012	Poste fibra de vidrio 12m 750kgf monolítico	ET-TD-ME04-02	200058
0012	Poste fibra de vidrio 12m 750kgf seccionado	ET-TD-ME04-02	200059
0012	Poste metálico 12m 750kgf seccionado	ET-TD-ME04-03	200081
0012	Poste concreto 14 m 750 kgf monolítico	ET-TD-ME04-01	200022
0012	Poste fibra de vidrio 14 m 750 kgf monolítico	ET-TD-ME04-02	200064
0012	Poste fibra de vidrio 14 m 750kgf seccionado	ET-TD-ME04-02	200065
0012	Poste metálico 14 m 750 kgf seccionado	ET-TD-ME04-03	200083
0012	Poste concreto 14 m 750 kgf monolítico	ET-TD-ME04-01	200022
0012	Poste concreto 16m 750kgf monolítico	ET-TD-ME04-01	200029
0012	Poste fibra de vidrio 16m 750kgf seccionado	ET-TD-ME04-02	214752
0012	Poste metálico 16 m 750 kgf seccionado	ET-TD-ME04-03	215649
0147	Grapa de suspensión aluminio 2/0 AWG a 4/0 AWG	ET-TD-ME03-16	213343
0147	Grapa de suspensión aluminio 4/0 AWG a 336.4 kcmil	ET-TD-ME03-16	217325
0140	Aislador suspensión polimérico 23kV ANSI C29.13 clase DS-28 clevis- lengüeta (1 Unidad)	ET-TD-ME02-04	200167

ENERGÍA NORMA TÉCNICAS NC - RA2 - 102 REV 0

NC - RA2 - 102. NORMA DE CONSTRUCCIÓN RED AÉREA NIVEL DE TENSIÓN 13.2 kV DELTA. CONFIGURACIÓN ÁNGULO CON CRUCETA DE 1500 mm

	,		
0140	Aislador suspensión polimérico 38kV ANSI C29.13 clase DS-35 clevis- lengüeta (1 Unidad)	ET-TD-ME02-04	200140
0141	Aislador poste porcelana 15kV 9" ANSI C29.7 clase 57-1	ET-TD-ME02-01	200154
0141	Aislador poste polimérico 15kV 14" ANSI C29.18 clase 51-1F	ET-TD-ME02-04	231819
0141	aislador poste polimérico 48kv 18.1" ANSI C29.18 clase 51-4F	ET-TD-ME02-04	200166
0069	Espigo extremo poste aislador tipo pin 508 mm rosca 1 3/8"	ET-TD-ME03-20	213699

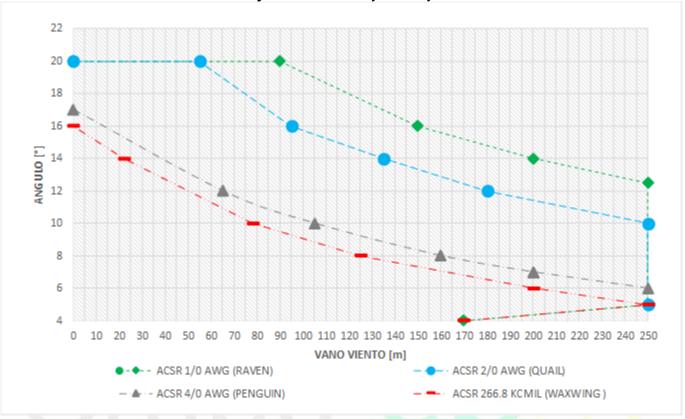
6 TENSIONADO DEL CONDUCTOR

El cálculo mecánico de los conductores se muestra en el documento *GM-12 Guía metodológica:* cálculos mecánicos de estructuras y elementos de sujeción *Grupo EPM* y se hace para las siguientes condiciones limitantes.

- Hipótesis A. Máxima velocidad del viento (temperatura mínima y viento máximo).
- Hipótesis B. Mínima temperatura (temperatura mínima y sin viento).
- Hipótesis C. Operación Diaria (Tensión diaria promedio, EDS).
- Hipótesis D. Máxima flecha (Temperatura máxima, sin viento).

En el documento anexo ANX-12B Tablas de cálculo mecánico cables desnudos se muestran las tensiones y flechas de los conductores utilizados por el Grupo EPM para las anteriores hipótesis, y las tablas de tendido para el rango de temperaturas que se presentan en la zona de influencia del grupo EPM se muestran en el documento anexo ANX-12D Tablas de tendido cables desnudos.

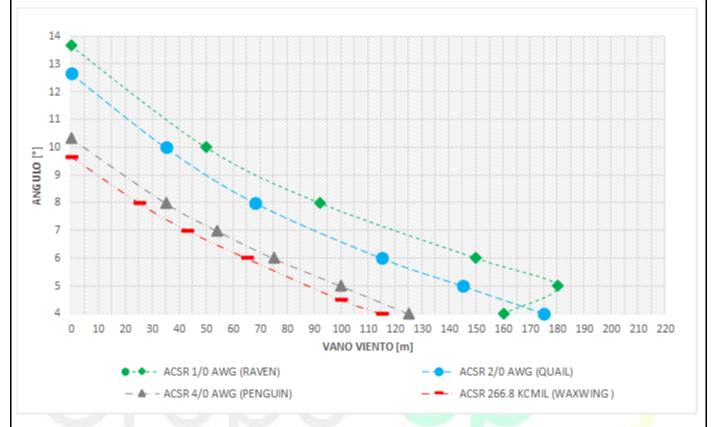
7 CURVA DE UTILIZACIÓN


Esta estructura debe usarse para los puntos de diseño dentro de la curva del conductor correspondiente, el comportamiento de la curva es debido a que el conductor de la fase superior, instalado en la cadena de aisladores debe mantener una distancia mínima a tierra de 170 mm y esto se logra dependiendo de la combinación que se tenga entre el ángulo y vano viento. La curva limita y garantiza que la distancia fase tierra se respete en condición de temperatura máxima, condición de mayor elongación del cable.

ENERGÍA	NORMA TÉCNICAS	NC - RA2 - 102	REV 0
Grupo•epm®	NC - RA2 - 102. NORMA DE CONST TENSIÓN 13.2 kV DELTA. CONFIGU DE 150	RACIÓN ÁNGULO CON	

Montaje a: con viento y sin bayoneta

Notas:


- 1. La curva de utilización se construyó con base en los parámetros meteorológicos más desfavorable del territorio de alcance del Grupo EPM, es decir clima cálido.
- La velocidad de viento máxima utilizada para la construcción de la curva es de 100 km/h.
- Las curvas en la gráfica indican el valor de vano viento máximo en función del ángulo para el rango de conductores verificados. El uso óptimo de la estructura corresponde a los puntos debajo de la curva.
- El vano viento corresponde al promedio de los vanos adyacentes en la estructura, es decir, se debe tener en cuenta la longitud del vano adelante y del vano atrás.
- El vano máximo admisible en la estructura limitado por la separación entre conductores es 250m.
- El vano máximo admisible en la estructura limitado por flecha para terreno plano es de 140.
- Cuando se requiera mejorar la curva de utilización, se podrán realizar cambios en los elementos de esta estructura, tales como aumentar la capacidad de carga de rotura de los postes, vientos con cable de mayor calibre, entre otros. Estos cambios deben ser validados y justificados por medio de cálculos electromecánicos según la particularidad del caso.
- El vano peso de la estructura para las condiciones climáticas evaluadas es de 300 m, este valor aplica para el rango de conductores de fase evaluados.

ENERGÍA	NORMA TÉCNICAS	NC - RA2 - 102	REV 0
Grupo•epm°	NC - RA2 - 102. NORMA DE CONST TENSIÓN 13.2 kV DELTA. CONFIGU		

DE 1500 mm

Montaje b: con viento y con bayoneta para soportar el cable de guarda

Notas:

ENEDGÍA

UNIDAD NORMALIZACIÓN Y LABORATORIOS

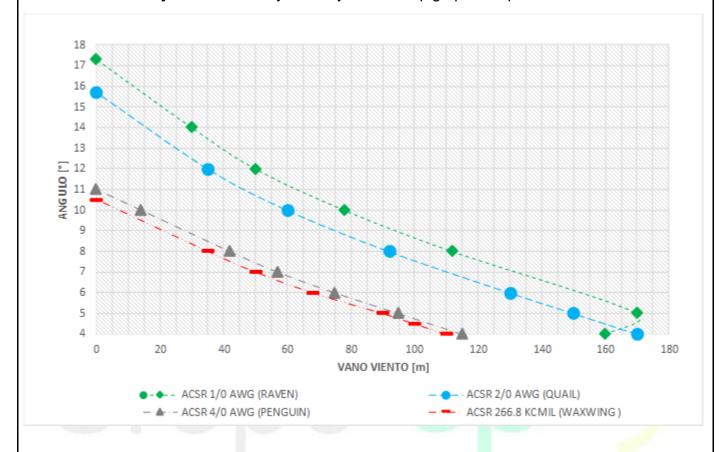
- La curva de utilización se construyó con base en los parámetros meteorológicos más desfavorable del territorio de alcance del Grupo EPM, es decir clima cálido.
- 2. La velocidad de viento máxima utilizada para la construcción de la curva es de 100 km/h.
- 3. Las curvas en la gráfica indican el valor de vano viento máximo en función del ángulo para el rango de conductores verificados. El uso óptimo de la estructura corresponde a los puntos debajo de la curva.
- 4. El vano viento corresponde al promedio de los vanos adyacentes en la estructura, es decir, se debe tener en cuenta la longitud del vano adelante y del vano atrás.
- 5. El vano máximo admisible en la estructura limitado por la separación entre conductores es 250m.
- 6. El vano máximo admisible en la estructura limitado por flecha para terreno plano es de 140.
- 7. Cuando se requiera mejorar la curva de utilización, se podrán realizar cambios en los elementos de esta estructura, tales como aumentar la capacidad de carga de rotura de los postes, vientos con cable de mayor calibre, instalar viento en la bayoneta, entre otros. Estos cambios deben ser validados y justificados por medio de cálculos electromecánicos según la particularidad del caso.
- 8. El vano peso de la estructura para las condiciones climáticas evaluadas es:

CABLE 1/0 AWG	CABLE 2/0 AWG	CABLE 4/0 AWG	CABLE 266,8 KCMIL
216 m	210 m	150 m	138 m

L	LINLINGIA	NORMA I ECNICAS			NO - NAZ - I	02	INE V U	
	Grupo•epm°					RUCCIÓN RED A RACIÓN ÁNGUL 00 mm		
	CENTROS DE EXCELENCIA	TÉCNICA	ANSI	Δ	ESCALA:	UNIDAD DE MEDIDA:		PÁGINA:

N/A

NC - PA2 - 102


DEV/ 0

10 de 17

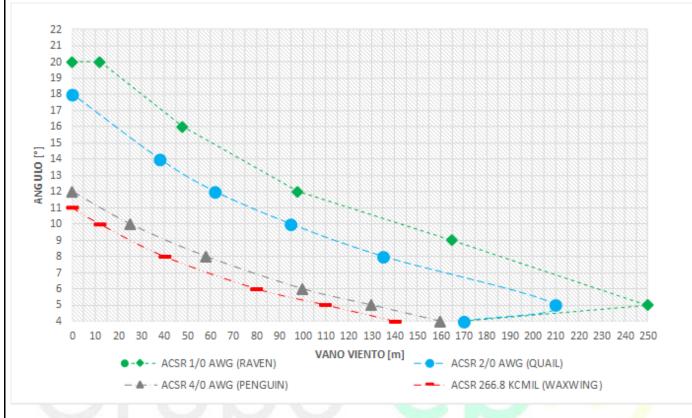
NORMA TÉCNICAS

Α

Montaje b: con viento y con bayoneta o espigo para soportar el neutro

Notas:

- La curva de utilización se construyó con base en los parámetros meteorológicos más desfavorable del territorio de alcance del Grupo EPM, es decir clima cálido.
- 2. La velocidad de viento máxima utilizada para la construcción de la curva es de 100 km/h.
- 3. Las curvas en la gráfica indican el valor de vano viento máximo en función del ángulo para el rango de conductores verificados. El uso óptimo de la estructura corresponde a los puntos debajo de la curva.
- 4. El vano viento corresponde al promedio de los vanos adyacentes en la estructura, es decir, se debe tener en cuenta la longitud del vano adelante y del vano atrás.
- 5. El vano máximo admisible en la estructura limitado por la separación entre conductores es 250m.
- 6. El vano máximo admisible en la estructura limitado por flecha para terreno plano es de 140.
- 7. Cuando se requiera mejorar la curva de utilización, se podrán realizar cambios en los elementos de esta estructura, tales como aumentar la capacidad de carga de rotura de los postes, vientos con cable de mayor calibre, instalar viento en la bayoneta, entre otros. Estos cambios deben ser validados y justificados por medio de cálculos electromecánicos según la particularidad del caso.
- 8. El vano peso de la estructura para las condiciones climáticas evaluadas es:


UNIDAD NORMALIZACIÓN Y LABORATORIOS

CABLE 1/0 AWG	CABLE 2/0 AWG	CABLE 4/0 AWG	CABLE 266,8 KCMIL
204 m	204 m	138 m	132 m

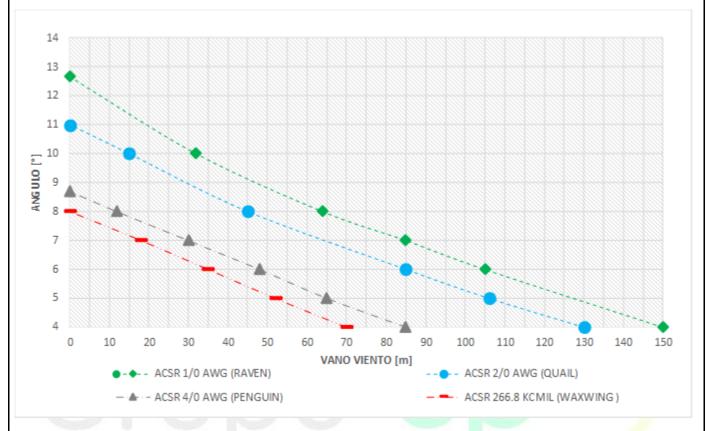
ENERGÍA	NORMA TÉCNICAS			NC - RA2 - 10	02	REV 0	
Grupo• ep m®		l 13.2 k\			RUCCIÓN RED A RACIÓN ÁNGUL 0 mm		
CENTROS DE EXCELENCIA	TÉCNICA	ANSI	A -1	ESCALA:	UNIDAD DE MEDIDA:		PÁGINA:

11 de 17

Montaje d: sin viento y sin bayoneta

Notas:

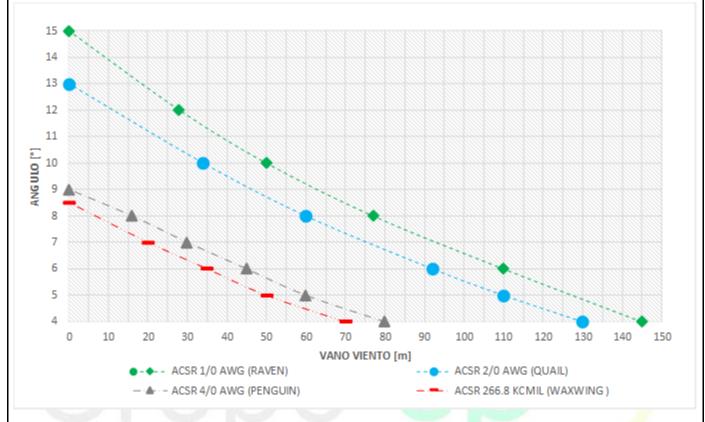
- La curva de utilización se construyó con base en los parámetros meteorológicos más desfavorable del territorio de alcance del Grupo EPM, es decir clima cálido.
- La velocidad de viento máxima utilizada para la construcción de la curva es de 100 km/h.
- Las curvas en la gráfica indican el valor de vano viento máximo en función del ángulo para el rango de conductores verificados. El uso óptimo de la estructura corresponde a los puntos debajo de la curva.
- El vano viento corresponde al promedio de los vanos adyacentes en la estructura, es decir, se debe tener en cuenta la longitud del vano adelante y del vano atrás.
- El vano máximo admisible en la estructura limitado por la separación entre conductores es 250m.
- El vano máximo admisible en la estructura limitado por flecha para terreno plano es de 140.
- Cuando se requiera mejorar la curva de utilización, se podrán realizar cambios en los elementos de esta estructura, tales como aumentar la capacidad de carga de rotura de los postes, entre otros. Estos cambios deben ser validados y justificados por medio de cálculos electromecánicos según la particularidad del caso.
- El vano peso de la estructura para las condiciones climáticas evaluadas es:


CABLE 1/0 AWG	CABLE 2/0 AWG	CABLE 4/0 AWG	CABLE 266,8 KCMIL
300 m	252 m	192 m	168 m

ENERGÍA	NORMA TÉCNICAS	NC - RA2 - 102	REV 0
Grupo• ep m®	NC - RA2 - 102. NORMA DE CONST TENSIÓN 13.2 kV DELTA. CONFIGU		

DE 1500 mm

Montaje e: sin viento y con bayoneta para soportar el cable de guarda


Notas:

- La curva de utilización se construyó con base en los parámetros meteorológicos más desfavorable del territorio de alcance del Grupo EPM, es decir clima cálido.
- 2. La velocidad de viento máxima utilizada para la construcción de la curva es de 100 km/h.
- 3. Las curvas en la gráfica indican el valor de vano viento máximo en función del ángulo para el rango de conductores verificados. El uso óptimo de la estructura corresponde a los puntos debajo de la curva.
- 4. El vano viento corresponde al promedio de los vanos adyacentes en la estructura, es decir, se debe tener en cuenta la longitud del vano adelante y del vano atrás.
- 5. El vano máximo admisible en la estructura limitado por la separación entre conductores es 250m.
- 6. El vano máximo admisible en la estructura limitado por flecha para terreno plano es de 140.
- 7. Cuando se requiera mejorar la curva de utilización, se podrán realizar cambios en los elementos de esta estructura, tales como aumentar la capacidad de carga de rotura de los postes, entre otros. Estos cambios deben ser validados y justificados por medio de cálculos electromecánicos según la particularidad del caso.
- 8. El vano peso de la estructura para las condiciones climáticas evaluadas es:

CABLE 1/0 AWG	CABLE 2/0 AWG	CABLE 4/0 AWG	CABLE 266,8 KCMIL
180 m	156 m	102 m	84 m

ENERGÍA	NORMA TÉCNICAS	NC - RA2 - 102	REV 0
Grupo-epm°	NC - RA2 - 102. NORMA DE CONST TENSIÓN 13.2 kV DELTA. CONFIGU DE 150	RACIÓN ÁNGULO CON	NIVEL DE CRUCETA

Montaje f: sin viento y con bayoneta o espigo para soportar el neutro

Notas:

- La curva de utilización se construyó con base en los parámetros meteorológicos más desfavorable del territorio de alcance del Grupo EPM, es decir clima cálido.
- 2. La velocidad de viento máxima utilizada para la construcción de la curva es de 100 km/h.
- 3. Las curvas en la gráfica indican el valor de vano viento máximo en función del ángulo para el rango de conductores verificados. El uso óptimo de la estructura corresponde a los puntos debajo de la curva.
- 4. El vano viento corresponde al promedio de los vanos adyacentes en la estructura, es decir, se debe tener en cuenta la longitud del vano adelante y del vano atrás.
- 5. El vano máximo admisible en la estructura limitado por la separación entre conductores es 250m.
- 6. El vano máximo admisible en la estructura limitado por flecha para terreno plano es de 140.
- 7. Cuando se requiera mejorar la curva de utilización, se podrán realizar cambios en los elementos de esta estructura, tales como aumentar la capacidad de carga de rotura de los postes, entre otros. Estos cambios deben ser validados y justificados por medio de cálculos electromecánicos según la particularidad del caso.
- 8. El vano peso de la estructura para las condiciones climáticas evaluadas es:

CABLE 1/0 AWG	CABLE 2/0 AWG	CABLE 4/0 AWG	CABLE 266,8 KCMIL
174 m	156 m	96 m	84 m

ENERGÍA	NORMA TÉCNICAS	NC - RA2 - 102	REV 0
Grupo-epm°	NC - RA2 - 102. NORMA DE CONST TENSIÓN 13.2 kV DELTA. CONFIGU DE 150	RACIÓN ÁNGULO CON	NIVEL DE CRUCETA

ESCALA: N/A

UNIDAD DE MEDIDA:

PÁGINA: 14 de 17

8 **NOTAS GENERALES**

- 1. Todas las dimensiones, en las figuras, están dadas en milímetros.
- 2. En zonas con nivel de contaminación fuerte (IV) y muy fuerte (V) o costera se debe utilizar conductores AAAC.
- 3. En redes con tensión igual a 13.2 kV se utilizarán aislador pin de porcelana ANSI C29.5 clase 55-4, distancia de fuga 228 mm y distancia de arco 127 mm. Para zonas con nivel de contaminación fuerte (IV), muy fuerte (V) o costera se debe utilizar aisladores line post poliméricos ANSI C29.18 clase 57-2F distancia de fuga 356 mm y distancia de arco 165 mm. Además, en zonas de alta densidad de descargas atmosféricas (DDT) se debe utilizar aisladores line post poliméricos ANSI C29.18 clase 51-4F, distancia de fuga 850 mm v distancia de arco 311 mm.
- 4. En zonas de contaminación fuerte (IV), muy fuerte (V) o costera se debe utilizar en las cadenas, un aislador de suspensión adicional por fase o aislador polimérico ANSI DS-28 tipo clevis 23 kV.
- 5. En zonas de alta densidad de descargas atmosféricas (DDT) se debe utilizar aisladores poliméricos ANSI DS-35 tipo clevis 38 kV.
- 6. En zonas con nivel de contaminación fuerte (IV) y muy fuerte (V) o costera se debe utilizar poste en poliéster reforzado con fibra de vidrio (PRFV). ET-TD-ME04-02.
- 7. En zonas con nivel de contaminación fuerte (IV) y muy fuerte (V) o costera se debe emplear herrajes de acero inoxidable y estructuras PFRV.
- 8. En caso de que el poste no tenga las perforaciones indicadas en los planos, se podrá utilizar abrazadera o collarín fabricados según NTC 2663 con carga máxima a tensión de 30 KN y carga máxima cortante de 24 KN. Especificación técnica ET-TD-ME03-08.
- 9. En los casos donde la estructura no requiera apantallamiento, pero se deba instalar cable neutro, la bayoneta se podrá reemplazar por un espigo.

ENERGÍA	NORMA TÉCNICAS	NC - RA2 - 102
Grupo• ep m°	NC - RA2 - 102. NORMA DE CONST TENSIÓN 13.2 kV DELTA. CONFIGU	RUCCIÓN RED AÉI RACIÓN ÁNGULO

ED AÉREA NIVEL DE **GULO CON CRUCETA DE 1500 mm**

REV₀

9 ANEXOS

Tabla 4. Curvas de utilización por conductor montaje a: con viento y sin bayoneta

ACSR 1/0 AWG (RAVEN)		ACSR 2/0 AWG (QUAIL)		ACSR 4/0 AWG (PENGUIN)		ACSR 266.8 KCMIL (WAXWING)	
ÁNGULO	VV	ÁNGULO	VV	ÁNGULO	VV	ÁNGULO [°]	VV
[°]	[m]	[°]	[m]	[°]	[m]		[m]
4.0	170.0	5.0	250.0	6.0	250.0	4.0	170.0
5.0	250.0	10.0	250.0	7.0	200.0	5.0	250.0
12.5	250.0	12.0	180.0	7.0	200.0	6.0	200.0
14.0	200.0	14.0	135.0	8.0	160.0	8.0	125.0
16.0	150.0	16.0	95.0	10.0	105.0	10.0	78.0
20.0	90.0	20.0	55.0	12.0	65.0	14.0	22.0

Tabla 5. Curvas de utilización por conductor montaje b: con viento y con bayoneta para soportar el cable de guarda

ACSR 1/0 AWG (RAVEN)		ACSR 2/0 AWG (QUAIL)		ACSR 4/0 AWG (PENGUIN)		ACSR 266.8 KCMIL (WAXWING)	
ÁNGULO	VV	ÁNGULO	VV	ÁNGULO	VV	ÁNGULO [°]	VV
[°]	[m]	[°]	[m]	[°]	[m]		[m]
4.0	160.0	4.0	175.0	4.0	125.0	4.0	115.0
5.0	180.0	5.0	145.0	5.0	100.0	4.5	100.0
6.0	150.0	6.0	115.0	6.0	75.0	6.0	65.0
8.0	92.0	8.0	68.0	7.0	54.0	7.0	43.0
10.0	50.0	10.0	35.0	8.0	35.0	8.0	2 <mark>5.0</mark>
13.7	0.0	12.7	0.0	10.3	0.0	9.7	0.0

Tabla 6. Curvas de utilización por conductor montaje b: con viento y con bayoneta o espigo para soportar el neutro

ACSR 1/0 AWG (RAVEN)		ACSR 2/0 AWG (QUAIL)		ACSR 4/0 AWG (PENGUIN)		ACSR 266.8 KCMIL (WAXWING)	
ÁNGULO [°]	VV	ÁNGULO	VV	ÁNGULO	VV	ÁNGULO	VV
	[m]	[°]	[m]	[°]	[m]	[°]	[m]
4.0	160.0	4.0	170.0	4.0	115.0	4.0	110.0
5.0	170.0	5.0	150.0	5.0	95.0	4.5	100.0
8.0	112.0	6.0	130.0	6.0	75.0	5.0	90.0
10.0	78.0	8.0	92.0	7.0	57.0	6.0	68.0
12.0	50.0	10.0	60.0	8.0	42.0	7.0	50.0
14.0	30.0	12.0	35.0	10.0	14.0	8.0	35.0

ENERGÍA	NORMA TÉCNICAS	NC - RA2 - 102	REV 0
		, ,	

NC - RA2 - 102. NORMA DE CONSTRUCCIÓN RED AÉREA NIVEL DE TENSIÓN 13.2 kV DELTA. CONFIGURACIÓN ÁNGULO CON CRUCETA DE 1500 mm

Tabla 7. Curvas de utilización por conductor montaje c: sin viento y sin bayoneta

ACSR 1/0 AWG (RAVEN)		ACSR 2/0 AWG (QUAIL)		ACSR 4/0 AWG (PENGUIN)		ACSR 266.8 KCMIL (WAXWING)	
ÁNGULO [°]	VV [m]	ÁNGULO [°]	VV [m]	ÁNGULO [°]	VV [m]	ÁNGULO [°]	VV [m]
4.0	170.0	4.0	170.0	4.0	160.0	4.0	140.0
5.0	250.0	5.0	210.0	5.0	130.0	5.0	110.0
9.0	165.0	8.0	135.0	6.0	100.0	6.0	80.0
12.0	98.0	10.0	95.0	8.0	58.0	8.0	40.0
16.0	48.0	12.0	62.0	10.0	25.0	10.0	12.0
20.0	12.0	14.0	38.0	12.0	0.0	11.0	0.0

Tabla 8. Curvas de utilización por conductor montaje d: sin viento y con bayoneta para soportar el cable de quarda

ACSR 1/0 AWG (RAVEN)		ACSR 2/0 AWG (QUAIL)		ACSR 4/0 AWG (PENGUIN)		ACSR 266.8 KCMIL (WAXWING)	
ÁNGULO [°]	VV [m]	ÁNGULO [°]	VV [m]	ÁNGULO [°]	VV [m]	ÁNGULO [°]	VV [m]
4.0	150.0	4.0	130.0	4.0	85.0	4.0	70.0
6.0	105.0	5.0	106.0	5.0	65.0	5.0	52.0
7.0	85.0	6.0	85.0	6.0	48.0	6.0	35.0
8.0	64.0	8.0	45.0	7.0	30.0	7.0	18.0
10.0	32.0	10.0	15.0	8.0	12.0	8.0	0.0
12.7	0.0	11.0	0.0	8.7	0.0	0.0	0.0

Tabla 9. Curvas de utilización por conductor montaje f: sin viento y con bayoneta o espigo para soportar el neutro

ACSR 1/0 AWG (RAVEN)		ACSR 2/0 AWG (QUAIL)		ACSR 4/0 AWG (PENGUIN)		ACSR 266.8 KCMIL (WAXWING)	
ÁNGULO	VV	ÁNGULO	VV	ÁNGULO	VV	ÁNGULO	VV
[°]	[m]	[°]	[m]	[°]	[m]	[°]	[m]
4.0	145.0	4.0	130.0	4.0	80.0	4.0	70.0
6.0	110.0	5.0	110.0	5.0	60.0	5.0	50.0
8.0	77.0	6.0	92.0	6.0	45.0	6.0	35.0
10.0	50.0	8.0	60.0	7.0	30.0	7.0	20.0
12.0	28.0	10.0	34.0	8.0	16.0	8.5	0.0
15.0	0.0	13.0	0.0	9.0	0.0	0.0	0.0

ENERGÍA	NORMA TÉCNICAS	NC - RA2 - 102	REV 0
Crino oos	NC - RA2 - 102. NORMA DE CONST	RUCCIÓN RED AÉREA I	NIVEL DE

